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Abstract

Imitation learning is a promising technique for teach-
ing robots complex movement sequences. One key problem
in this area is the transfer of perceived movement charac-
teristics from perception to action. For the solution of this
problem, representations are required that are suitable for
the analysisand the synthesis of compl ex action sequences.
We describe the method of Hierarchical Spatio-Temporal
Morphable Models that allows an automatic segmentation
of movements sequences into movement primitives, and a
modeling of these primitives by morphing between a set of
prototypical trajectories. We use HSTMMs in an imitation
learning task for human writing movements. The models
arelearned fromrecorded trajectories and transferred to a
human-like robot arm. Due to the generalization proper-
ties of our movement representation, the armis capabl e of
synthesizing new writing movementswith only a few learn-
ing examples.

1 Introduction

The goal of imitation learning is to teach robots by ob-
servation of movement sequences. Imitation learning has
to address two fundamental problems. (1) The movement
characteristics of observed movements have to be trans-
ferred from the perceptual level to the level of generated
actions [20] [14]. (2) Continuous spaces of movements
with variable styles have to be approximated based on a
limited number of learned example sequences. This im-
plies that the robot should be able to synthesize new move-
ments based on the learned examples.

One method that fulfills these requirements is the tech-
nique of Spatio-Temporal Morphable Models (STMMs).
This methods represents the spatio-temporal characteris-
tics of complex movement sequences by linear combina-
tion of example trajectories with different characteristics.

Linear combinations of space-time patterns can be defined
efficiently by exploiting spatio-temporal correspondence,
by weighted summation of spatial and temporal displace-
ment fields that morph the prototypical movement trajecto-
ries into a reference pattern. This method has been success-
fully applied for the generation and analysis of complex
movements in computer graphics [4, 10] as well as for the
recognition of movements and movement styles from tra-
jectories in computer vision [10, 11].

To generalize the method of linear combination for
complex sequences containing multiple complex move-
ments we have extended the basic STMM algorithm by
introducing a second hierarchy level that represents mo-
tion primitives. Each movement primitive is modeled using
a STMM. In this way generative models for complex se-
quences of movements with variable styles can be learned
from example trajectories. This method of Hierarchical
STMMs (HSTMMs) has been successfully applied for the
automatic recognition and synthesis of sequences of com-
plex karate techniques [11], and for the estimation of skill
levels of different actors [12] using a small amount of mo-
tion capture data. This shows that our method is suitable
for building models for continuous movement spaces from
a small amount of training data that can be used for analy-
sis and synthesis.

In this paper we present an application of this algorithm
for the imitation learning in robots. We show how HST-
MMs can be linked to a robot control architecture. We il-
lustrate our method by imitating human-like writing move-
ments using a robot arm. Based on a small number of
prototypical examples, our robot can learn to imitate and
caricature writing styles, and to synthesize new styles of
writing movements.

1.1 Related Work

Our work includes the identification and the segmenta-
tion of movement primitives, and the low-dimensional rep-



resentation of movements by interpolation. Various meth-
ods for the parameterization of movement styles have been
proposed in computer graphics and computer vision, e.g.
based on Hidden Markov Models [2][24], principal com-
ponent analysis [25] [1] [3], or Fourier components [23].
Different studies on imitation learning have investigated
methods for describing the spatio-temporal characteristics
of movements using principal component analysis [6] and
spatio-temporal isomaps [13]. In [19], a verb-adverb ap-
proach was proposed that applies a combination of radial
basis functions and low-order polynomials for defining pa-
rameterized interpolations between example movements.
For this approach specific key times (e.g. the foot contact
with the ground) must be specified by hand. Time Warping
is defined by linear interpolation between these key times.
In [22] and [15], this interpolation is realized with splines.

For the identification and segmentation of movement
primitives within longer movement sequences appropriate
features are required that provide a robust characteriza-
tion of individual movement elements. Different elemen-
tary spatio-temporal and kinematic features have been pro-
posed in the literature, like angular velocity [16] [17], or
curvature and torsion of the 3D trajectories [5].

2 Hierarchical Spatio-Temporal Morphable
Models as representation for Imitation
Learning

The process of establishing spatio-temporal correspon-
dence between complex movement sequences consists of
two steps. First, the sequences are segmented into move-
ment primitives. Second, these movement primitives are
modeled by STMMs. The following sections describe the
extraction of the movement primitives, the modeling by
STMMs and the transfer of the synthesized movement se-
quences onto the robot arm. An overview of the algorithm
is shown in figure 1.

2.1 Identification of movement primitives

For the identification of movement primitives within a
complex movement sequence an appropriate description of
the spatio-temporal characteristics of the individual move-
ment elements must be found that is suitable for a robust
matching with stored prototypical movement primitives®.

Based on such features spatio-temporal correspondence
between new movement sequences and stored example se-
quences can be established on a coarse level.

1The prototypical movement primitives can be specified for example
by manual segmentation of prototypical trajectories
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Figure 1: Schematic description of the algorithm for syn-
thesizing and imitation of complex movement sequences.
In the first step the sequence is decomposed into move-
ment primitives. These movement primitives can be an-
alyzed and changed in style by defining linear combina-
tions of prototypes with different linear weight combina-
tions. Afterward, the individual movement primitives are
concatenated into longer movement sequences. This tech-
nique allows to generate sequences containing movements
with multiple styles. The mapping of these movement se-
quences onto the robot arm is done in three steps: mapping
of coordinates, posture initialization, and task execution.

The underlying features must be invariant against
changes of the style of the individual movements elements.
The key features of our algorithm are zeros of the velocity
in few “characteristic coordinates “of the trajectory ¢(¢),
which are important for the identification of the movement
primitive. Let m be the index of the motion primitive and
x(t) be the "reduced trajectory” of the characteristic coor-
dinates that has the values 7" at the velocity zeros?. The
movement primitive is then characterized by the vector dif-
ferences Ak!* = k! — k™, of subsequent velocity zeros
contained in the primitive (see figure 2).

A robust identification of movement primitives in noisy
data with additional or missing zero-velocity points «; can
be achieved with dynamic programming. Purpose of the
dynamic programming is an optimal sequence alignment
between the key features of the prototypical movement
primitive g" ... xg* and the key features of a search win-
dow kg .. . k. This is accomplished by minimizing a cost
function ¢ that is given by the sum of ||Ax? — AxT*|| over
all matched key features. A formal description of the algo-
rithm is given in [11].

27ero-velocity is defined by a a zero of the velocity in at least one
coordinate of the reduced trajectory.
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Figure 2: Illustration of the method for the automatic iden-
tification of movement primitives: (a) In a first step all
key features «; are determined. (b) Sequences of key fea-
tures from the sequences (s) are matched with sequences
of key features from the prototypical movement primitives
(m) using dynamic programming. A search window is
moved over the sequence. The length of the window is
two times the number of key features of the learned mo-
tor primitive. The best matching trajectory segment is de-
fined by the sequence of feature vectors that minimizes
> ||Ax;—Ax|| over all matched key features. With this
method spatio-temporal correspondence at a coarse level is
established.

2.2 Morphable Models for modeling and con-
catenation of movement primitives

The technique of spatio-temporal morphable models
[8, 10] is based on linearly combining the movement trajec-
tories of prototypical motion patterns in space-time. Linear
combinations of movement patterns are defined on the ba-
sis of spatio-temporal correspondences that are computed
by dynamic programming [4]. Complex movement pat-
terns can be characterized by trajectories of feature points.
The trajectories of the prototypical movement pattern p can
be characterized by the time-dependent vector ¢, (). The
correspondence field between two trajectories ¢, and ¢,
is defined by the spatial shifts £(¢) and the temporal shifts
7(t) that transform the first trajectory into the second. The
transformation is specified mathematically by the equation:

Co(t) = G (E+ 7 (1) + £(1) @

By linear combination of spatial and temporal shifts the
spatio-temporal morphable model allows to interpolate
smoothly between motion patterns with significantly dif-
ferent spatial structure, but also between patterns that differ

with respect to their timing.

The correspondence algorithm determines the tempo-
ral and spatial shifts by minimizing the weighted sum of
the quadratic spatial and temporal displacements over the
whole image sequence. In the time-continuous case, this
error is given by the integral:

Ef6,r] = / €O +Ar@2]dt @)

The error has to be minimized under the additional con-
straint that the mapping between the time variable ¢ and the
modified time ¢’ = ¢ + 7(¢) for the trajectory (, (¢') must
be continuous, one-to-one, and monotonically increasing,
in order to define unique temporal warping of the sequence
(1. For further details about the underlying algorithm we
refer to [8][10].

Signifying the spatial and temporal shifts between pro-
totype p and the reference pattern by &£ ,(¢) and 7, (¢), lin-
early combined spatial and temporal shifts can be defined
by the two equations:

Et) =) wy&,(t) )= wyn(t)

The weights w,, define the contributions of the indi-
vidual prototypes to the linear combination. We always
assume convex combinations with 0 < w, < 1 and
> w, = 1. After linearly combining the spatial and tem-
poral shifts the trajectories of the morphed pattern can be
recovered by morphing the reference pattern in space time
using the spatial and temporal shifts £(¢) and 7(¢). The
space-time morph is defined by equation (1) where ¢, has
to be identified with the reference pattern and ¢, with the
resulting space-time morph.

Reference
Sequence

time

Figure 3: Illustration of the established spatio-temporal
correspondence between a prototypical trajectory and a
reference sequence with the correspondence vector fields
Tand &.

The synthesized movement elements were concatenated
using an algorithm described in [9]. This algorithm first



normalizes the trajectories of the movement primitives and
then combines linearly the trajectories and there start and
end points.

3 Transferring human-like movements to a
robot arm

The transfer of the trajectories to the robot is performed
in three stages: 1) The HSTMM synthesizes trajectories in
the same space as the prototype trajectories. Therefore, one
has to transform synthesized trajectories from the proto-
type space into the task space of the robot. Also the trajec-
tory is scaled appropriately. 2) The second stage initializes
the robot posture to a specific recorded (and appropriately
transformed) initial human arm posture. 3) The task exe-
cution is performed by reproducing the exact end-effector
trajectory and approximating the human arm posture.

3.1 Mapping of the coordinate systems

In the investigated task of writing movements the end
effect trajectories are approximately planar. The drawing
area of the synthesized writing movements has to be trans-
formed into a drawing area in task space. The drawing
plane is given® by two vectors u and v, which define a task
orientation frame

Ti=[u v uxv] (4

The starting point of the movement is given by the posi-
tion vector p. Since the task space is planar, we can use the
first principal components e, e; of the HSTMM output se-
quence ((t), to define an orientation frame of the trajectory
as

Td = [ el €9 e; X ey ] (5)

Note that e, es span the whole task space for our appli-
cation. The trajectory ((t) is then first centered

Q(t) = Ct) = DGk, ®)
k=1

where we assume that the trajectory is given in a dis-
cretized form ((¢1),...,{(tn) with &4 = 0. The cen-

tered trajectory ((¢;) can be scaled to avoid violation of
task space constraints. The final target trajectory ¢*(¢) is
given by

¢t =p+TeT;" ({0 -L0). ™

3The plane could be determined by a stereo vision system.

3.2 Initialization of robot posture

The kinematic structure of humans and robots are usu-
ally different. Therefore, marker positions can usually not
be transferred to the robot directly. Only if the robot is
humanoid and has an equivalent kinematic structure the
marker positions can be used directly [18]. Otherwise one
has to define ”posture specifiers” that are applicable to hu-
mans as well as to robots. Imitation of posture is achieved
by transferring these posture specifiers from the human to
the robot.

LetLy, Ry, E; and F; denote left shoulder, right shoul-
der, elbow and finger marker in transformed prototype
space. As posture specifiers we chose orientation normals
of two planes. The normal vector of the first plane is de-
fined as

oo La=CONxBa=C0) g
[ (La = ¢*(t1)) x (Ba — ¢*(t1)) ||
This plane is spanned by the left shoulder, the elbow and
an arbitrary reference point. In our case we chose the start-
ing point *(¢1) of the trajectory ¢*(¢). Equivalently let

£, = (Ra—C(t) x (Fg — (" (1))
| (Ra = ¢* (1)) x (Fa — C*(t1)) ||

be the normal of the second plane which is spanned by
finger, right shoulder and ¢*(¢1). Letq = [q1, q2] be the
joint values of the robot, where q; influences the elbow po-
sition and g2 does not. The corresponding plane normals
e.(q1), f.(qo) of the robot are calculated in an equivalent
way (see fig. 4). For this purpose we use the a-priori spec-
ified position vector p from 3.1 instead of (*(¢;)%. In ad-
dition a virtual left shoulder position has to be specified to
determine the relative orientation of robot arm to the robot

9

basis.

Figure 4: Illustration of the plane normals e, and f.. A
virtual left shoulder L,. position of the robot is defined a-
priori.

The initial posture of the robot is adjusted to the initial
human posture by first minimizing

ngiln lea — er(a1)ll- (10)

4The reference point ¢(¢1) must ensure that eg # f4Vt. Otherwise
another reference point has to be chosen.



over the joints qi, and subsequently minimizing
min ||f; — £ (q.)]| (11)
q2

over qo. The solution minimizes the angles betweene,., e4
and f,., f; respectively.

3.3 Task Execution

Starting from its initial posture, the trajectory of the
robot is planned by solving the following optimization
problem that depends on the discretely sampled joint vari-
ables q(#;) :

min p(a(t) = llea — e [* + alla(t:) — a(ti-1)|*

(12
subject to
P.(a(t:) — ¢ (ti) =0 (13

where P,.(q(t;)) describes the end-effector position. This
problem is solved for each time step ¢; of the trajectory
separately. The objective function p(q(t;)) measures the
euclidian distance between the normals e; and e,.. An ad-
ditional regularization term is added to penalize high joint
velocities. This term depends on the difference between
the new joint configuration q(¢;) and the previous con-
figuration q(¢;—1). The scalar « determines the tradeoff
between smoothness of obtained joint trajectories and the
quality of imitation. As a starting point, we use the joint
values obtained by classical inverse kinematics. The joint
trajectories were computed off-line. °

4 Experiments

We demonstrate the application of the proposed method
by imitation and synthesis of human writing movements.
In the following we desribe the technical details and results
of the performed experiments.

Motion Capture: We recorded writing movements of
two human actors who wrote the word “ICAR” (fig. 5)
using a commercial motion capture system (VICON 612,
Oxford) with 6 cameras. We used 10 (passive) markers that
included the shoulders, 2 front and one rear torso, upper
arm, elbow, front arm, hand and index finger of the writing
arm.

5A computational faster implementation to solve eq. (12) is obtained
by using explicit information about the null space of the manipulator ja-
cobian (see [7]).

Identification of movement primitives: Individual let-
ters were defined as movement primitives. The automatic
segmentation of the movement primitives was based on the
index finger trajectories. The segmentation algorithm was
trained with one example for each movement primitive that
was obtained by manual segmentation of the trajectory of
one of the actors. Figure 6 shows the result of the automatic
segmentation for the actor that was not used for training.

Right
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Figure 5: Left panel: Motion capturing of writing move-
ments on a board. White dots indicate the positions of the
recorded markers. Right panel: Illustration of the marker
set and the trace of the finger marker during the wrting of
the word "ICAR”.
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Figure 6: Results of the automatic segmentation for one
“ICAR” sequence identifying movement primitives (let-
ters) based on previously learned prototypical movement
primitives. The diagrams shows the distance measure of
the dynamic programming method, §, for different matches
of the corresponding movement primitive over the whole
sequence. The circles mark the times of the matched key
feature kI in the sequence. Each match of a whole move-
ment primitive is illustrated by a row of circles with the
same d. The number of circles corresponds to the number
of key features of the movement primitive. The black bars
at the bottom describe the result of a manual segmentation
of the same four movement primitives (mp 1-4).



Syntheses of writing movements:  Continuous spaces of
individual movements are generated by linear combina-
tions of the segmented movement primitives. These move-
ments are then automatically concatenated into longer se-
quences including multiple movement primitives. Figure 7
shows the synthesized pen trajectories of the writing move-
ments. The method allows to morph continuously between
the writing sequences of the two actors (left panel). In ad-
dition we can synthesize caricatures of the specific writ-
ing styles of each actor (right panel). Also, the individual
movement primitives can be reassembled in a different se-
quential order, e.g. in order to write the word "’ IACR”
(middle row). All movement sequences were synthesized
based on only two prototypical example trajectories.
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200| =z 200 Permuted
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=
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—~400| ~400
600 600 m EXB
Original B

100 0 100 200 300 400 500 600 700 o 200 400 600 800
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Figure 7: Left panel: Recorded pen trajectories and morphs
between the original writing movements. The morphs in-
terpolate continuously in space-time between the proto-
types. Right panel: Original pen trajectories and exagger-
ations of the writing styles of the two actors. The middle
row shows synthesis of a new word "IACR” by reassem-
bling the movement primitives in a different sequential or-
der.

Transfer to the Robot arm: The synthesized move-
ments were executed using a Mitsubishi PA-10 7-DOF
robot arm (fig. 8). Optimization has been performed for
different values of a (eq. 12). Figure 9 illustrates that
for small values of « a better imitation (measured by the
difference ||es — eq4]|) is achieved but discontinuous joint
trajectories can arise. These discontinuities disappear for
large values of « at the cost of worse imitation quality.

5 Discussion

We have presented a method for imitation learning of
complex movement trajectories that is based on linear
combination of small sets of prototypical example move-
ment sequences. The proposed algorithm decomposes long
trajectories automatically into movement primitives, and
models these primitives by linear combination of prototyp-
ical trajectories. We also have shown how such flexible

Figure 8: Left panel: The Mitsubishi PA-10 robot arm
used to execute the writing movements. Right panel: Writ-
ing examples of the Originals A and B and the average
morph in between (compare fig. 7).

representations of movement trajectories can be coupled
with a real robot system in a way that ensures the accurate
reproduction of endpoint trajectories and the imitation of
the style of the human movement. The proposed method
can be generalized in a straightforward way to other tasks
and movement classes and is not restricted to the imitation
of writing.

The method of HSTMM has the advantage that it works
with very small sets of training data [10][12][11]. Many
popular methods for the representation of trajectories, e.g.
HMMs or unsupervised learning of manifolds [13][2] typi-
cally require substantial amounts of training data. Another
advantage of HSTMM s is the relatively intuitive interpre-
tation of the weights of the linear combinations that specify
the style characteristics of the individual prototypes. The
proposed method for transferring the synthesized trajecto-
ries to the robot has the advantage that it combines an exact
control of the endeffector position with a more ”’soft” con-
trol geometric variables that characterize the style of the
executed arm movements.

The presented application is only a first simple demon-
stration of the application of HSTMM s in imitation learn-
ing. Future work has to apply and to extend the pro-
posed algorithms for more complex robot systems, and for
more complex tasks that include additional constraints, e.g.
obstacle avoidance. The successful application of HST-
MM s for the synthesis and analysis of complex whole body
movements in computer graphics and sports [10][12][11]
suggests that the same algorithms might also perform well
in imitation learning for humanoid robots.
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