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Tangential neurons in the fly brain are sensitive to the typical optic flow
patterns generated during egomotion. In this study, we examine whether
a simplified linear model based on the organization principles in tangential
neurons can be used to estimate egomotion from the optic flow. We present
a theory for the construction of an estimator consisting of a linear combina-
tion of optic flow vectors that incorporates prior knowledge both about the
distance distribution of the environment, and about the noise and egomotion
statistics of the sensor. The estimator is tested on a gantry carrying an omni-
directional vision sensor. The experiments show that the proposed approach
leads to accurate and robust estimates of rotation rates, whereas translation
estimates are of reasonable quality, albeit less reliable.

1 Introduction

A moving visual system generates a characteristic pattern of image motion on
its sensors. The resulting optic flow field is an important source of information
about the egomotion of the visual system (Gibson, 1950). In the fly brain, part of
this information is analyzed by a group of wide-field, motion-sensitive neurons,
the tangential neurons in the lobula plate (Hausen, 1993; Egelhaaf, Kern, Krapp,
Kretzberg, Kurtz, & Warzecha, 2002). A detailed mapping of their local preferred
directions and motion sensitivities (Krapp & Hengstenberg, 1996) reveals a strik-
ing similarity to certain egomotion-induced optic flow fields (cf. Fig. 1). This sug-
gests that each tangential neuron extracts a specific egomotion component from
the optic flow which may be useful for gaze stabilization and flight steering.

A recent study (Franz & Krapp, 2000) has shown that a simplified computa-
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Figure 1: Mercator map of the response field of the neuron VS10. The orientation of each
arrow gives the local preferred direction (LPD), and its length denotes the relative local
motion sensitivity (LMS). The results suggest that VS10 responds maximally to rotation
around an axis at an azimuth of about

�����
and an elevation of about

���
(after Krapp et al.,

1998).

tional model of the tangential neurons as a weighted sum of flow measurements
was able to explain certain properties of the observed response fields. The weights
were chosen according to an optimality principle which minimizes the output
variance of the model caused by noise and distance variability between differ-
ent scenes. In that study, however, we mainly focussed on a comparison between
the sensitivity distribution in Tangential Neurons and the weight distribution of
such optic flow processing units. Here we present a classical linear estimation ap-
proach that extends the previous model to the complete egomotion problem. We
again use linear combinations of local flow measurements, but - instead of pre-
scribing a fixed motion axis and minimizing the output variance - we minimize
the quadratic error in the estimated egomotion parameters. The derived weight
sets for the single model neurons are identical to those obtained from one of the
model variants discussed in Franz and Krapp (2000). Of primary interest for this
article is, however, that the new approach yields a novel, extremely simple esti-
mator for egomotion that consists of a linear combination of model neurons. Our
experiments indicate that this insect-inspired estimator shows - in spite of its sim-
plicity - an astonishing performance that often comes close to the more elaborate
approaches of classical computer vision.

This article is structured as follows: in Sect. 2, we describe the derivation of

2



w11

w12

w13

+

optic flow
vectors

LPD unit
vectors

LMSs summation

u i

v i

p i

d i

x

z

ya. b.

Figure 2: ��� Sensor model: At each viewing direction 	�
 , there are two measurements �

and ��
 of the optic flow ��
 along two directions ��
 and ��
 on the unit sphere. ��� Simplified
model of a tangential neuron: The optic flow and the local noise signal are projected onto
a unit vector field. The weighted projections are linearly integrated. The model assumes
that the integrated output encodes a egomotion component defined by either a translation
or a rotation axis.

the egomotion estimator from a least squares principle. In Sect. 3, we subject the
obtained model to a rigorous real-world test on a gantry carrying an omnidirec-
tional vision sensor. The evidence and the properties of such a neural representa-
tion of egomotion are discussed in Sect. 4. A preliminary account of our work has
appeared in Franz and Chahl (2003).

2 Optimal linear estimators for egomotion

2.1 Egomotion sensor and neural model

In order to simplify the mathematical treatment, we assume that the � motion
detectors of our egomotion sensor are arranged on the unit sphere. The viewing
direction of the inputs to a particular motion detector with index � is denoted by the
radial unit vector � 
 . At each viewing direction, we define a local two-dimensional
coordinate system on the sphere consisting of two orthogonal tangential unit vec-
tors � 
 and � 
 (Fig. 2 � )1. We assume that we measure the local flow component
along both unit vectors subject to additive noise. Formally, this means that we
obtain at each viewing direction two measurements � 
 and � 
 along � 
 and � 
 ,
respectively, given by� 
��! "
$# � 
&%('*)�+ 
 and � 
,�- "
*# � 
�%.',/0+ 
21 (1)

1For mathematical convenience, we do not take into account the hexagonal arrangement of the
optical axes of the photoreceptors within the fly compound eye.
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where ',)�+ 
 and ',/0+ 
 denote additive noise components with a given covariance 354
and  �
 the local optic flow vector. When the spherical sensor translates with 6
while rotating with 7 about an axis through the origin, the egomotion-induced
image flow  "
 at � 
 is  �
8�:9<;,
>=?6@9-=A6B# � 
DC � 
DCE9F7HG � 
2I (2);�
 is the inverse distance between the origin and the object seen in direction � 
 ,
the so-called “nearness” (Koenderink & van Doorn, 1987). The entire collection
of flow measurements � 
 and � 
 comprises the input to a simplified neural model
which consists of a weighted sum of all local measurements (Fig. 2 J )KL � MN 
-O )�+ 
 � 
% MN 
PO /�+ 
 � 
 (3)

with local weights O )�+ 
 and O /�+ 
 . In this model, the local motion sensitivity (LMS)
is defined as O 
Q�SRT= O )�+ 
?1 O /�+ 
UCWVXR , the local preferred direction (LPD) is parallel
to the vector YZ\[ = O )�+ 
?1 O /�+ 
]C V . The resulting LMSs and LPDs can be compared to
measurements on real tangential neurons (Franz & Krapp, 2000).

As our basic hypothesis, we assume that the output of such neural models
is used to estimate a egomotion component of the sensor. Since the output is a
scalar, we need in the simplest case an ensemble of six neural models to encode
all six rotational and translational degrees of freedom. To keep the mathematical
treatment simple, we assume that the motion axes of interest are aligned with the
global coordinate system. In principle, any set of linearly independent axes could
be used.

The local weights of each unit are chosen to yield an optimal linear estimator
for the respective egomotion component. In addition, we allow the neural models
to interact linearly, such that the whole ensemble output is a linear combination of
the individual neural outputs. This last step is necessary since the neural models
do not react specifically to their own egomotion component due to the broad tun-
ing of the motion detector model (cf. Eq. (1)). The response of the neural model
can be made more specific by using the output of the other neurons to suppress the
signal caused by other egomotion components (Krapp, Hengstenberg, & Egelhaaf,
2001; Haag & Borst, 2003).

2.2 Prior knowledge

An estimator for egomotion consisting of a linear combination of flow measure-
ments necessarily has to neglect the dependence of the optic flow on object dis-
tances. As a consequence, the estimator output will be different from scene to
scene, depending on the current distance and noise characteristics. The best the
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estimator can do is to add up as many flow measurements as possible hoping that
the individual distance deviations of the current scene from the average over all
scenes will cancel each other. Clearly, viewing directions with low distance vari-
ability and small noise content should receive a higher weight in this process. In
this way, prior knowledge about the distance and noise statistics of the sensor and
its environment can improve the reliability of the estimate.

If the current nearness at viewing direction � 
 differs from the average near-
ness ^;�
 over all scenes by _`;8
 , the measurement � 
 (or � 
 , respectively) can be
written as (see Eqns. (1) and (2))� 
8�a9b=c^;�
 � V
 1�= � 
dG � 
AC V C5e 67 f %(',)�+ 
9._g;,
 � 
D6h1 (4)

where the last two terms vary from scene to scene, even when the sensor undergoes
exactly the same egomotion.

To simplify the notation, we stack all i � measurements over the entire mo-
tion detector array in the vector j!�k= � Y 1 � Y 1 �$l 1 ��l 1�ImInIm1 � M 1 � M C V . Similarly, the
egomotion components along the � -, � - and o -directions of the global coordi-
nate sytem are combined in the vector

L �p=]q8)r1Wq,/T1sq,t�1vu<)r1wu</x1vuyt�C V , the scene-
dependent terms of Eq. (4) in the 2 � -vector z � =A'8)�+ Y 9{_g; Y � Y 6|1}',/0+ Y 9_g; Y � Y 6h1cInImInI~C V and the scene-independent terms in the 6xN-matrix �:�{=W=>9�^; Y � V Y 19b= � Y G � Y C V C�1,=>9�^; Y � V Y 1�9�= � Y G � Y C V C�1cInImInI~C V . The entire ensemble of measure-
ments over the sensor becomes thusj��!� L %�z�I (5)

Assuming that 6 , '�)�+ 
 , ',/0+ 
 and ;�
 are uncorrelated, the covariance matrix 3 of
the scene-dependent measurement component n is given by3�
����!3�4T+ 
��E%�3���+ 
�� � V
 3�� � � (6)

with 3�4 being the covariance of ' , 3�� of ; and 3�� of 6 . These three covariance
matrices, together with the average nearness ^;�
 , constitute the prior knowledge
required for deriving the optimal estimator.

2.3 Optimized linear estimator

Using the notation of Eq. (5), we write the output of the whole ensemble as a
linear estimator KL �@��j}I (7)� denotes a � x2 � weight matrix where each of the � rows consists of a linear
combination of the weight sets of the neural models (see Eq. (3)). The optimal
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weight matrix is chosen to minimize the mean square error � of the estimator
given by ���!��=0R L 9 KL R l C}�P���&���B3�� V*� (8)

where � denotes the expectation. We additionally impose the constraint that the
estimator should be unbiased for z���� , i.e.,

KL � L
. From Eqns. (5) and (7) we

obtain the constraint equation �B�B�{��� x ��I (9)

The solution minimizing the associated Euler-Lagrange functional (   is a � x � -
matrix of Lagrange multipliers)¡ �P���&���B3�� V � %F����¢  V =>��� x �B9(�B��C � (10)

can be found analytically and is given by� �S£i  ¤� V 3b¥ Y (11)

with  (��i=?� V 3 ¥ Y ��C ¥ Y . The rows of � V 3 ¥ Y correspond to the neural model of
Eq. (3)2,   acts as a correction matrix that supresses the part of the neural signal
caused by the egomotion components to which the neuron is not tuned to.

When computed for the typical inter-scene covariances of a flying animal, the
resulting weight sets are able to explain many of the characteristics of the LMS
and LPD distributions of the tangential neurons (Franz & Krapp, 2000). However,
the question remains whether the output of such an ensemble of neural models can
be used for some real-world task. This is by no means evident given the fact that
- in contrast to most approaches in computer vision - the distance distribution of
the current scene is completely ignored by the linear estimator.

3 Experiments

3.1 Linear estimator for an office robot

As our test scenario, we consider the situation of a mobile robot in an office en-
vironment. This scenario allows for measuring the typical motion patterns and
the associated distance statistics which otherwise would be difficult to obtain for
a flying agent.

The distance statistics were recorded using a rotating laser scanner. The 26
measurement points were chosen along typical trajectories of a mobile robot while

2The resulting LMSs correspond exactly to those obtained from the linear range model in
(Franz & Krapp, 2000) if one assumes a diagonal ¦ .
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Figure 3: Distance statistics of an indoor robot (0 azimuth corresponds to forward di-
rection; the distances on the contour lines are given in Õ ): �\� Average distances from
the origin in the visual field ( ÖØ×:ÙÛÚ ). Darker areas represent larger distances. ��� Dis-
tance standard deviation in the visual field ( Ö ×ÜÙÛÚ ). Darker areas represent stronger
deviations.

wandering around and avoiding obstacles in an office environment. The recorded
distance statistics therefore reflect properties both of the environment and of the
specific movement patterns of the robot. From these measurements, the average
nearness ^;8
 and its covariance 3¤� were computed (cf. Fig. 3, we used distance
instead of nearness for easier interpretation).

The distance statistics show a pronounced anisotropy which can be attributed
to three main factors: (1) Since the robot tries to turn away from the obstacles, the
distance in front and behind the robot tends to be larger than on its sides (Fig. 3 � ).
(2) The camera on the robot usually moves at a fixed height above ground (here:
0.62 Ý ) on a flat surface. As a consequence, distance variation is particularly
small at very low elevations (Fig. 3 J ). (3) The office environment also contains
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Figure 4: Neural models computed as part of the linear estimator. Notation is identical
to Fig. 1. The depicted region of the visual field extends from Þàß �r� to ß0á �x� azimuth and
from Þ�â � � to â � � elevation. The model neurons are tuned to � . forward translation, � .
translations to the right, ã . downward translation, ä . roll rotation, å . pitch rotation, and æ .
yaw rotation.

corridors. When the robot follows the corridor while avoiding obstacles, distance
variations in the frontal region of the visual field are very large (Fig. 3 J ).

The estimation of the translation covariance 3�� is straightforward since our
robot can only translate in forward direction, i.e. along the o -axis. 3�� is therefore
0 everywhere except the lower right diagonal entry which corresponds the square
of the average forward speed of the robot (here: 0.3 m/s). The motion detector
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noise was assumed to be zero-mean, uncorrelated and uniform over the image,
which results in a diagonal 3¤4 with identical entries. The noise standard devia-
tion of 0.34 deg./s was determined by presenting a series of articially translated
images of the laboratory (moving at 1.1 deg./s) to the flow algorithm used in the
implementation of the estimator (see Sect. 3.2). ^; , 3à� , 3�� and 3¤4 constitute the
prior knowledge necessary for computing the estimator (Eqns. (6) and (11)).

The optimal weight sets for the neural models for the six degrees of free-
dom (each of which corresponds to a row of � V 3 ¥ Y ) are shown in Fig. 4. All
neural models have in common that image regions near the rotation or transla-
tion axis receive less weight. In these regions, the egomotion components to be
estimated generate only small flow vectors which are easily corrupted by noise.
Equation (11) predicts that the estimator will preferably sample in image regions
with smaller distance variations. In our measurements, this is mainly the case at
the ground around the robot (Fig. 3). The rotation-selective neural models assign
higher weights to distant image regions, since distance variations at large distances
have a smaller effect. In our example, distances are largest in front and behind the
robot so that the neural model for yaw assigns the highest weights to these regions
(Fig. 4 ç ). This effect is less pronounced in the other rotational neural models be-
cause the translational flow is almost orthogonal to their local directions and thus
interferes to a much lesser degree.

Although the small weights near the motion axes and the overall distribution of
local directions are similar to those found in tangential neurons, our neural mod-
els show specific adaptations to the indoor robot scenario: the highly weighted
ground regions are exactly the opposite to our model predictions for a flying an-
imal where the ground region shows a stronger distance variability than regions
near and above the horizon (Franz & Krapp, 2000). The predicted dorsoventral
asymmetry with small weights in the ground region is indeed observed in the tan-
gential neurons (see Fig. 1 and Krapp, Hengstenberg, & Hengstenberg, 1998).
The strong weighting of the frontal region in the yaw neural model (Fig. 4 ç ) is
also corridor-specific, so it is not surprising that this feature is not present in an
animal that evolved in an open outdoor environment.

3.2 Gantry experiments

The egomotion estimates from the ensemble of neural models were tested on a
gantry with three translational and one rotational (yaw) degree of freedom. Since
the gantry had a position accuracy below 1mm, the programmed position values
were taken as ground truth for evaluating the estimator’s accuracy.

As vision sensor, we used a camera mounted above a mirror with a circularly
symmetric hyperbolic profile. This setup allowed for a 360

�
horizontal field of

view extending from 90
�

below to 45
�

above the horizon. Such a large field of
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Figure 5: Gantry experiments: Results are given in arbitrary units, true rotation values
are denoted by a dashed line, translation by a dash-dot line. Grey bars denote translation
estimates, white bars rotation estimates ��� Estimated vs. real egomotion; �ê� Estimates of
the same egomotion at different locations; ã � Estimates for constant rotation and varying
translation; ä � Estimates for constant translation and varying rotation.

view considerably improves the estimator’s performance since the individual dis-
tance deviations in the scene are more likely to be averaged out. More details
about the omnidirectional camera can be found in Chahl and Srinivasan (1997).
In each experiment, the camera was moved to 10 different start positions in the lab
at the same height above ground (0.62 Ý ) as the robot camera3, but with largely
varying distance distributions near and above the horizon. After recording an im-
age of the scene at the start position, the gantry translated and rotated at various
speeds and directions and took a second image. After the recorded image pairs
(10 for each type of movement) were unwarped, we computed the optic flow input
for the neural models using a standard gradient-based scheme (Srinivasan, 1994).

3The translational neurons in Fig. 4for the mobile robot case assign a high weight to the ground
region. As a consequence, the translation estimates strongly depend on the correct height above
ground, whereas rotational neurons are only indirectly affected.
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The average error of the rotation rate estimates over all trials (N=450) was
0.7
�
/s (5.7% rel. error, Fig. 5 � ), the error in the estimated translation speeds

(N=420) was 8.5 mm/s (7.5% rel. error). The estimated rotation axis had an av-
erage error of magnitude 1.7

�
, the estimated translation direction 4.5

�
. The larger

error of the translation estimates is mainly caused by the direct dependence of the
translational flow on distance (see Eq. (2)) whereas the rotation estimates are only
indirectly affected by distance errors via the current translational flow component
which is largely filtered out by the local direction template. The larger sensitivity
of the translation estimates to distance variations can be seen by moving the sen-
sor at the same translation and rotation speeds in various locations. The rotation
estimates remain consistent over all locations whereas the translation estimates
show a higher variance and also a location-dependent bias, e.g., very close to lab-
oratory walls (Fig. 5 J ). A second problem for translation estimation comes from
the different properties of rotational and translational flow fields: Due to its dis-
tance dependence, the translational flow field shows a much wider range of local
image velocities than a rotational flow field. The smaller translational flow vec-
tors are often swamped by simultaneous rotation or noise, and the larger ones tend
to be in the upper saturation range of the used optic flow algorithm. This can be
demonstrated by simultaneously translating and rotating the sensor. Again, rota-
tion estimates remain consistent at different translation speeds while translation
estimates are strongly affected by rotation (Fig. 5 è and é ).

4 Discussion

Egomotion estimation. Our experiments show that it is possible to obtain useful
egomotion estimates from an ensemble of linear neural models in a real-world
task. Although a linear approach necessarily has to ignore the distances of the
currently perceived scene, an appropriate choice of local weights and a large field
of view are capable of reducing the influence of noise and distance variability on
the estimates. In particular, rotation estimates were highly accurate and consis-
tent across different scenes and different simultaneous translations. Translation
estimates were not as accurate and less robust against changing scenes and si-
multaneous rotation. The performance difference was to be expected because of
the direct distance dependence of the translational optic flow which leads to a
larger variance of the estimator output. This problem can only be resolved by
also estimating the distances in the current scene (e.g., in the iterative schemes in
Koenderink & van Doorn, 1987; Heeger & Jepson, 1992). This, however, requires
significantly more complex computations. Another reason is the limited dynamic
range of the flow algorithm used in the experiments, as discussed in the previous
section. One way to overcome this problem would be using an optic flow algo-
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Figure 6: Hypothetical neurons constructed for � . roll and J . pitch rotation.

rithm that estimates image motion on different temporal or spatial scales which is,
again, computationally more expensive.

Our results show that the linear estimator accurately estimates rotation under
general egomotion conditions and without any knowledge of the object distances
of the current scene. The estimator may be used in technical applications such as
image stabilization of a moving camera, or the removal of the rotational compo-
nent from the currently measured optic flow. Both measures considerably simplify
the estimation of distances from the remaining optic flow and the detection of in-
dependently moving objects. In addition, the simple architecture of the estimator
allows for an efficient implementation at low computational costs, which are sev-
eral orders of magnitude smaller than the costs of computing the entire optic flow
input.

The components of the estimator are simplified neural models which - when
computed for a flying animal - are able to reproduce characteristics of the TN re-
ceptive field organization, i.e. the distribution of LMSs and LPDs (Franz & Krapp,
2000). Our study suggests that Tangential Neurons may be used for self-motion
estimation by linearly combining their outputs at the level of the lobula plate (e.g.
Krapp et al., 2001) or at later integration stages. Evidence for the latter possibility
comes from recent electrophysiological studies on motor neurons, which inner-
vate the fly neck motor system and mediate gaze stabilization behaviour (Huston
& Krapp, 2003). The possible behavioural role of such egomotion estimates, how-
ever, will critically depend on the dynamic properties of the whole sensorimotor
loop, as well as on specific tuning of the motion processing stage providing the
input. An example of using integrated optic flow for controlling a robotic system
is described in Reiser and Dickinson (2003).

Neural computation of egomotion. The description of any egomotion re-
quires at most six degrees of freedom. Therefore an ensemble of six neurons, as in
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our gantry experiments, would be sufficient to encode the entire egomotion of the
fly. There are, however, at least 13 tangential neurons (3 HS and 10 VS neurons) in
either side of the fly lobula plate which not even cover all degrees of freedom, e.g.,
none of the currently known receptive fields represent lift translation (reviews in
Hausen, 1984, 1993; Krapp, 2000). A plausible explanation might be that the axes
covered by tangential neurons - thus constituting the sensory coordinate system -
are aligned with the axes used by the motor coordinate system. Recent studies on
gaze stabilization in Calliphora suggest that in some cases the output of individual
tangential neurons is connected to individual motor neurons driving certain head
movements (Huston & Krapp, 2003).

Another hint comes from an interesting property of our linear model: The
linearly combined output of two model neurons corresponds to the linear com-
bination of their respective weight sets. For the tangential neurons, this would
mean that the summed output of several neurons may be treated as a superposi-
tion of their individual local response properties. The receptive fields of many
tangential neurons often cover only a smaller part of the visual field, perhaps due
to anatomical or developmental constraints. By summing the output of several
neurons, one could build estimators with extended receptive fields covering more
than one visual hemisphere. This is demonstrated in Fig. 6, where we construct a
hypothetical pitch neuron from the inverted output of VS1-3 added to the output
of VS8-10. Also shown in Fig. 6 is the response field of VS6 which was shown to
be ideally suited to sense roll-rotations (Franz & Krapp, 2000).

Linearity. Finally, we have to point out a basic difference of between the
proposed theory and optic flow processing in the fly: It assumes that the motion
detector signals the tangential neurons integrate depend linearly on velocity (see
Eq. (1)) (Reichardt, 1987). The output of fly motion detectors, however, is linear
only within a limited velocity range. The motion detector output also depends on
the spatial pattern properties of the visual surroundings (Borst & Egelhaaf, 1993).
These properties are reflected by the tangential neurons’ response properties. Be-
yond a certain image velocities, for instance, their response stays at a plateau when
the velocity is increased. Even higher velocities result in a decrease of the neu-
ron’s response (Hausen, 1982). Within the plateau range, tangential neurons can
only indicate the presence and the sign of a particular egomotion, but not the ac-
tual velocity. A detailed comparison between linear model neurons and tangential
neurons shows characteristic differences. Under the conditions of the neurophysi-
ological experiments reported in (Franz & Krapp, 2000), tangential neurons seem
to operate in the plateau range rather than in the linear range. Under such response
regimes a linear combination of tangential neuron outputs would not indicate the
true egomotion.

Physiological mechanisms have been described, however, which may help to
overcome these limitations to a certain degree. A non-linear integration of local
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motion detector signals, known as dendritc gain control (Borst, Egelhaaf, & Haag,
1995), prevents the output of the tangential neurons from saturating when its entire
receptive field is stimulated. This mechanism results in a size invariant response,
which still depends on velocity. Harris, O’Carroll, and Laughlin (2000) show
that contrast gain control is of similar significance. It contributes to the neuron’s
adaptation to visual motion, i.e. it prevents the tangential neurons from saturating
at high visual contrasts and image velocities.

Even though these mechanisms may not establish a linear dependence over
the entire velocity range they may considerably extend it. Evidence supporting
this idea comes from a study by Lewen, Bialek, and de Ruyter van Steveninck
(2001). The authors performed electrophysiological experiments on the H1 tan-
gential neuron in a natural outdoor environment and at bright daylight. They
show that the linear dynamic range of H1 under these conditions is significantly
extended compared to stimulation with a periodic grating within the same range
of velocities but applied in the laboratory.

Despite these results it is still not entirely clear whether an extended linear
dynamic range of the tangential neurons is sufficient to cover all needs in gaze sta-
bilization and flight steering. Within the linear range, however, the fly might take
advantage of all the beneficial properties the linear model offers. For instance, it
may combine the outputs of several tangential neurons to form matched filters for
particular egomotions. In case of the intrinsic tangential neuron VCH, thought to
be involved in figure ground discrimination (Warzecha, Borst, & Egelhaaf, 1992),
this seems to hold true. VCH receives input from several other Tangential Neurons
the response fields of which are well characterized. By combining the response
fields of the inputting tangential neurons the VCH response field is readily ex-
plained (Krapp et al., 2001). This suggests that linear combination of tangential
neuron response fields may well be an option for the fly visual system to estimate
egomotion.
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