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Volterra and Wiener series are perhaps the best understood nonlinear system
representations in signal processing. Although both approaches have enjoyed a
certain popularity in the past, their application has been limited to rather low-
dimensional and weakly nonlinear systems due to the exponential growth of the
number of terms that have to be estimated. We show that Volterra and Wiener
series can be represented implicitly as elements of a reproducing kernel Hilbert
space by utilizing polynomial kernels. The estimation complexity of the implicit
representation is linear in the input dimensionality and independent of the degree
of nonlinearity. Experiments show performance advantages in terms of conver-
gence, interpretability, and system sizes that can be handled.

1 Introduction

In system identification, one tries to infer the functional relationship between system
input and output from observations of the in- and outgoing signals. If the system is
linear, it can be always characterized uniquely by its impulse response. For nonlin-
ear systems, however, there exists no canonical representation that encompasses all
conceivable systems. The earliest approach to a systematic, i.e., a nonparametric, char-
acterization of nonlinear systems dates back to V. Volterra who extended the standard
convolution description of linear systems by a series of polynomial integral operators
with increasing degree of nonlinearity, very similar in spirit to the Taylor series for
analytic functions (Volterra, 1887). The last 120 years have seen the accumulation of
huge amount of research done both on the class of systems that can be represented by
Volterra operators, and on their application in such diverse fields as nonlinear differen-
tial equations, neuroscience, fluid dynamics or electrical engineering (overviews and
bibliography in Schetzen, 1980; Rugh, 1981; Mathews & Sicuranza, 2000; Giannakis
& Serpedin, 2001).

A principal problem of the Volterra approach is the exponential growth of the num-
ber of terms in the operators, both with degree of nonlinearity and with input dimen-
sionality. This has limited its application to rather low-dimensional systems with mild
nonlinearities. Here, we show that this problem can be largely alleviated by reformu-
lating the Volterra and Wiener series as operators in a reproducing kernel Hilbert space
(RKHS). In this way, the whole Volterra and Wiener approach can be incorporated into
the rapidly growing field of kernel methods. In particular, the estimation of Volterra or
Wiener expansions can be done by polynomial kernel regression which scales only lin-
early with input dimensionality, independent of the degree of nonlinearity. Moreover,
RKHS theory allows us to estimate even infinite Volterra series which was not possible
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before. Our experiments indicate that the RKHS formulation also leads to practical
improvements in terms of prediction accuracy and interpretability of the results.

In the next section, we review the essential results of the classical Volterra and
Wiener theories of nonlinear systems1. In Sect. 3, we discuss newer developments
since the mid-80s that lead to our new formulation which is presented in Sect. 4. A
preliminary account of this work has appeared in Franz and Schölkopf (2004).

2 Volterra and Wiener theory of nonlinear systems

The Volterra class. A system can be defined as a map that assigns an output signal
y(t) to an input signal x(t) (we assume for the moment that x(t) and y(t) are functions
of time t). Mathematically, this rule can be expressed in the form

y(t) = Tx(t) (1)

using a system operator T that maps from the input to the output function space. The
system is typically assumed to be time-invariant and continuous, i.e., the system re-
sponse should remain unchanged for repeated presentation of the same input and small
changes in the input functions x(t) should lead to small changes in the corresponding
system output functions y(t). In traditional systems theory, we further restrict T to be
a sufficiently well-behaved compact linear operator H1 such that the system response
can be described by a convolution

y(t) = H1x(t) =
∫

h(1)(τ)x(t − τ) dτ (2)

of x(t) with a linear kernel (or impulse response) h(1)(τ). A natural extension of this
convolution description to nonlinear systems is the Volterra series operator

y(t) = V x(t) = H0x(t) + H1x(t) + H2x(t) + · · · + Hnx(t) + · · · (3)

in which H0x(t) = h0 = const. and

Hnx(t) =
∫

h(n)(τ1, . . . , τn)x(t − τ1) . . . x(t − τn) dτ1 . . . dτn (4)

is the nth-order Volterra operator (Volterra, 1887, 1959). The integral kernels h (n)(τ1, ..
.., τn) are the Volterra kernels. Depending on the system to be represented, the inte-
grals can be computed over finite or infinite time intervals. The support of the Volterra
kernel defines the memory of the system, i.e., it delimits the time interval in which past
inputs can influence the current system output. The Volterra series can be regarded
accordingly as a Taylor series with memory: whereas the usual Taylor series only rep-
resents systems that instantaneously map the input to the output, the Volterra series
characterizes systems in which the output also depends on past inputs.

The input functions typically come from some real, separable Hilbert space such as
L2[a, b], the output functions from the space C[a, b] of bounded continuous functions.
Similar to the Taylor series, the convergence of a Volterra series can only be guaranteed
for a limited range of the system input amplitude. As a consequence, the input functions
must be restricted to some suitable subset of the input space. For instance, if the input

1This section is mainly a review for readers who are not familiar with Wiener and Volterra theory
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signals form a compact subset of the input function space, one can apply the Stone-
Weierstraß theorem (a generalization of the Weierstraß theorem to nonlinear operators;
see, e.g., Hille & Phillips, 1957) to show that any continuous, nonlinear system can
be uniformly approximated (i.e., in the L∞-norm) to arbitrary accuracy by a Volterra
series operator of sufficient but finite order (Fréchet, 1910; Brilliant, 1958; Prenter,
1970)2.

Although this approximation result appears to be rather general on first sight, the
restriction to compact input sets is quite severe. An example of a compact subset are
the set of functions from L2[a, b] defined over a closed time interval with a common
upper bound (proof in Liusternik & Sobolev, 1961). In practice, this means that the
input signals have to be nonzero only on a finite time interval and that the approxi-
mation holds only there. Many natural choices of input signals are precluded by this
requirement such as, e.g., the unit ball in L2[a, b] or infinite periodic forcing signals.

The Wiener class. So far, we have only discussed the representation of a general
nonlinear system. Now we come to problem of obtaining such a representation from
data. For a linear system, this is a straightforward procedure since it suffices to test
the system on a set of basis functions from the input space (e.g., Delta functions or
sinusoids). In a nonlinear system, however, we ideally have to measure the system
response for all possible input functions. One way to achieve this is by testing the
system on realizations of a suitable random process.

The stochastic input chosen by Wiener is the limiting form of the random walk
process as the number of steps goes to infinity (or, equivalently, as the step size goes
to zero) which is nowadays known as Wiener process (Papoulis, 1991). One can show
that the Wiener process assigns a non-zero probability to the neighbourhood of every
continuous input function (Palm & Poggio, 1977). Thus the realizations of the Wiener
process play a similar role in Wiener theory as the sinusoidal test inputs in linear system
theory since they are capable of completely characterizing the system.

In system identification, we are only given pairs of input and output functions
whereas the system itself is treated as a black box. The appropriate Volterra repre-
sentation has to be found by minimizing some error measure between the true output
and the model output such as, e.g., the integral over the squared error. Thus, the ap-
proximation has to be only in the L2-norm, not in the L∞-norm as in Volterra theory. A
weaker approximation criterion typically relaxes the restrictions imposed on the input
and output set and on the type of systems that can be represented by a Volterra series
(Palm, 1978). Wiener theory relaxes the approximation criterion even further: assum-
ing that the input is generated by the Wiener process, it only requires an approximation
in the mean squared error sense over the whole process, not for any single realization
of it.

The minimization of the mean squared error for the estimation of the Volterra ker-
nels requires the solution of a simultaneous set of integral equations. This can be
avoided by using an orthogonal least-squares framework as proposed by Wiener (1958)
and Barrett (1963). Since the distribution of the input is known for the Wiener process
we can choose an input-specific decomposition of the system operator T

y(t) = G0x(t) + G1x(t) + G2x(t) + · · · + Gnx(t) + · · · (5)

2If one further restricts the system to have fading memory (i.e., the influence of past inputs decays expo-
nentially) the uniform approximation by finite Volterra series can be extended to bounded and slew-limited
input signals on infinite time intervals (Boyd & Chua, 1985).
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into a Wiener series of operators Gn that are mutually uncorrelated, i.e., orthogonal
with respect to the Wiener process. The Wiener operators Gn are linear combinations
of Volterra operators up to order n. They can be obtained from the original Volterra
series by a procedure very similar to Gram-Schmidt orthogonalization. For instance,
the second-degree Wiener operator3

G2x(t) =
∫

h2(τ1, τ2)x(t − τ1)x(t − τ2) dτ1dτ2 −
∫

h2(τ1, τ1) dτ1 (6)

consists of a zero-order and a second-order Volterra operator. The integral kernel of
the highest-order (i.e., nth-order) Volterra operator of G n is called the leading Volterra
kernel of Gn. As a result of the orthogonalization, the Gn can be estimated indepen-
dently of each other. Moreover, any truncation of this orthogonalized series minimizes
the mean squared error among all truncated Volterra expansions of the same order.

All systems that produce square integrable output for the Wiener input process
can be approximated in the mean square sense by finite order Wiener series operators
(Ahmed, 1970). In practice, this means that the systems must be non-divergent and
cannot have infinite memory. Due to the different types of inputs and convergence,
the classes of systems that can be approximated by infinite Volterra or Wiener series
operators are not identical. Some systems of the Wiener class cannot be represented as
a Volterra series operator and vice versa (Palm & Poggio, 1977; Korenberg & Hunter,
1990). However, a truncated Wiener or Volterra series can always be transformed into
its truncated counterpart.

One of the reasons for the popularity of the Wiener series is that the leading Volterra
kernels can be directly measured via the crosscorrelation method of Lee and Schetzen
(1965). If one uses Gaussian white noise with standard deviation A instead of the
Wiener process as input, the leading Volterra kernel of Gn can be estimated as

h(n)(σ1, . . . , σn) =
1

n!An

(
y(t) −

n−1∑
l=0

Glx(t)

)
x(t − σ1) . . . x(t − σn) (7)

where the bar indicates the average over time. The zero-order kernel is simply the time
average h(0) = y(t) of the output function. The other lower-order Volterra kernels
of Gn can be derived from the leading kernel by applying again a Gram-Schmid-type
orthogonalization procedure.

Discrete Volterra and Wiener systems. In practical signal processing, one uses a
discretized form for a finite sample of data. Here, we assume that the input data is given
as a vector x = (x1, . . . , xm)� ∈ R

m of finite dimension. The vectorial data can be
generated from any multi-dimensional input or, for instance, by a sliding window over
a discretized image or time series. A discrete system is simply described by a function
T : R

m → R, not by an operator as before. The discretized Volterra operator is defined
as the function

Hn(x) =
∑m

i1=1
· · ·
∑m

in=1
h

(n)
i1...in

xi1 . . . xin (8)

where the Volterra kernel is given as a finite number of mn coefficients h
(n)
i1...in

(Alper,
1965). It is, accordingly, a linear combination of all ordered nth-order monomials of

3Strictly speaking, the integrals in the Wiener operators have to be interpreted as stochastic integrals (e.g.
Papoulis, 1991) with respect to the Wiener process, i.e., the equality only holds in the mean squared sense.
For conditions under which the equality also holds for specific inputs, see Palm and Poggio (1977).
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the elements of x4. Analogously to the continuous Volterra series, it can be shown by
applying the Stone-Weierstraß theorem that all continuous systems with compact input
domain can be uniformly approximated by a finite, discrete Volterra series. For systems
with exponentially fading memory, the uniform approximation can be extended to all
input vectors with a common upper bound (Boyd & Chua, 1985).

The discrete analogue to the Wiener series is typically orthogonalized with respect
to Gaussian input x ∼ N (0, A) since this is the only practical setting where the popular
crosscorrelation method can be applied. All properties of continuous Wiener series
operators described above carry over to the discrete case. In particular, any square-
integrable function with Gaussian input can be approximated in the mean square sense
by a finite, discrete Wiener series (Palm & Poggio, 1978).

Problems of the crosscorrelation method. The estimation of the Wiener expansion
via crosscorrelation poses some serious problems:

1. The estimation of crosscorrelations requires large sample sizes. Typically, one
needs several tens of thousands of input-output pairs before a sufficient conver-
gence is reached. Moreover, the variance of the crosscorrelation estimator in
Eq. (7) increases with increasing values of the σi (Papoulis, 1991) such that only
operators with relatively small memory can be reliably estimated.

2. The estimation via crosscorrelation works only if the input is Gaussian noise
with zero mean, not for general types of input. In physical experiments, however,
deviations from ideal white noise and the resulting estimation errors cannot be
avoided. Specific inputs, on the other hand, may have a very low probability of
being generated by white noise. Since the approximation is only computed in
the mean square sense, the system response to these inputs may be drastically
different from the model predictions5.

3. In practice, the crosscorrelations have to be estimated at a finite resolution (cf. the
discretized version of the Volterra operator in Eq. (8)). The number of expansion
coefficients in Eq. (8) increases with mn for an m-dimensional input signal and
an nth-order Wiener kernel. However, the number of coefficients that actually
have to be estimated by crosscorrelation is smaller. Since the products in Eq. (8)
remain the same when two different indices are permuted, the associated coeffi-
cients are equal in symmetric Volterra operators. As a consequence, the required
number of measurements is (n + m− 1)!/(n!(m− 1)!) (Mathews & Sicuranza,
2000). Nonetheless, the resulting numbers are huge for higher-order Wiener ker-
nels. For instance, a 5th-order Wiener kernel operating on 256-dimensional input
contains roughly 1012 coefficients, 1010 of which would have to be measured in-
dividually by crosscorrelation. As a consequence, this procedure is not feasible
for higher-dimensional input signals.

4. The crosscorrelation method assumes noise-free signals. For real, noise-contam-
inated data, the estimated Wiener series models both signal and noise of the

4Throughout this text, we assume that the Volterra kernels are symmetric with respect to permutations
of the indices ij . A non-symmetric kernel can be converted into a symmetric kernel without changing the
system output (Mathews & Sicuranza, 2000).

5There are a number of studies that develop an orthogonal framework with respect to other input classes
(Schetzen, 1965; Ogura, 1972; Segall & Kailath, 1976). None of these, however, can be applied to input
classes differnt from the one they were developed for.
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training data which typically results in reduced prediction performance on inde-
pendent test sets.

3 Estimating Wiener series by linear regression in RKHS

Linear regression. The first two problems can be overcome by adopting the frame-
work of linear regression: given observations (x1, y1), . . . , (xN , yN ), linear regression
tries to estimate y as a function of x via

y = f(x) =
∑M

j=1
γjϕj(x), (9)

using γj ∈ R and a dictionary of M functions ϕj : R
m → R. In the case of pth-order

Volterra or Wiener series, this dictionary consists of all monomials of x up to order
p (see Eq. 8). Instead of assuming an infinite amount of data, the γ j are found by
minimizing the mean squared error over the dataset

c((x1, y1, f(x1)), . . . , (xN , yN , f(xN ))) =
1
N

∑N

j=1
(f(xj) − yj)2 (10)

which disposes of the cumbersome crosscorrelation estimator (Korenberg, Bruder, &
McIlroy, 1988; Mathews & Sicuranza, 2000). Moreover, the input signal class is no
more restricted to Gaussian noise, but can be chosen freely, e.g., from the ’natural’
input ensemble of the system. As long as the input is known to the experimenter, there
is no need for controlling the input as in the classical system identification setting.
Note, however, that the obtained Volterra models will approximate the Wiener series
only for sufficiently large datasets of Gaussian white noise. Korenberg et al. (1988)
have shown that the linear regression framework leads to Wiener models that are orders
of magnitude more accurate than those obtained from the crosscorrelation method.

Regression in RKHS. Instead of directly using the monomials as basis functions,
we will be interested in the case where the dictionary is specified in terms of a ker-
nel function k via ϕj(x) = k(x, zj), using a set of points z1, . . . , zM from R

m. In
particular, we consider positive definite kernels, i.e. functions k with the property that
the Gram matrix Kij = k(xi,xj) is positive definite for all choices of the x1, . . . ,xN

from the input domain. It can be shown that such kernels admit a representation as
a dot product in an associated linear space F, i.e., there exists a map Φ such that
k(x,x′) = Φ(x)�Φ(x′). Modulo certain details, F can be identified with a space
of functions

f(x) =
∑M

j=1
γjk(x, zj). (11)

This space has the structure of a reproducing kernel Hilbert space (RKHS). By car-
rying out linear methods in F, one can obtain elegant solutions for various nonlinear
estimation problems (see Schölkopf & Smola, 2002), examples being Support Vec-
tor Machines. Although F can have infinite dimension, 6 these problems can often be
solved efficiently, which is in part due to the so called representer theorem. It states
the following: suppose c is an arbitrary cost function, Ω is a nondecreasing function on
R+ and ‖ · ‖F is the norm of the RKHS. If we minimize an objective function

c((x1, y1, f(x1)), . . . , (xN , yN , f(xN ))) + Ω(‖f‖F), (12)

6Note that with a slight abuse of notation, we will nevertheless use the transpose to denote the dot product
in that space.
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over all γj and zj in (11), then an optimal solution7 can be expressed as

f(x) =
∑N

j=1
γjk(x,xj), γj ∈ R. (13)

In other words, although we did consider functions which were expansions in terms
of arbitrary points zj (see (11)), it turns out that we can always express the solution in
terms of the training points xj only. Hence the optimization problem over an arbitrarily
large number of M variables is transformed into one over N variables, where N is the
number of training points.

Let us consider the special case where the cost function is given by (10), and the
regularizer Ω is zero. The solution for γ = (γ1, . . . , γN) is readily computed by setting
the derivative of (10) with respect to the vector γ equal to zero; it takes the form γ =
K−1y where y = (y1, . . . , yN)�, hence8

y = f(x) = γ�k(x) = y�K−1k(x), (14)

where k(x) = (k(x,x1), k(x,x2), . . . , k(x,xN ))� ∈ R
N .

Volterra series as linear operator in RKHS. We now have the prerequisites to ad-
dress the third problem with a new estimation method for the Wiener series. As our first
step, we have to convert the Volterra series into a form suitable for regression in RKHS.
Our starting point is the discretized version of the Volterra operators from Eq. (8). The
nth-order Volterra operator is a weighted sum of all nth-order monomials of the input
vector x. For n = 0, 1, 2, . . . we define the map φn as

φ0(x) = 1 and φn(x) = (xn
1 , xn−1

1 x2, . . . , x1x
n−1
2 , xn

2 , . . . , xn
m) (15)

such that φn maps the input x ∈ R
m into a vector φn(x) ∈ Fn = R

mn

containing
all mn ordered monomials of degree n evaluated at x. Using φn, we can write the
nth-order Volterra operator in Eq. (8) as a scalar product in F n,

Hn(x) = η�
n φn(x), (16)

with the coefficients stacked into the vector ηn = (h(n)
1,1,...1, h

(n)
1,2,...1, h

(n)
1,3,...1, . . . )

� ∈
Fn. Fortunately, the functions φn constitute a RKHS. It can be easily shown (e.g.,
Schölkopf & Smola, 2002) that

φn(x1)�φn(x2) = (x�
1 x2)n =: kn(x1,x2). (17)

This equivalence was already used as early as 1975 in an iterative estimation scheme
for Volterra models, long before the RKHS framework became commonplace (Poggio,
1975).

The estimation problem can be solved directly if one applies the same idea to the
entire pth-order Volterra series. By stacking the maps φn with positive weights an into
a single map φ(p)(x) = (a0φ0(x), a1φ1(x), . . . , apφp(x))�, one obtains a mapping
from R

m into F
(p) = R × R

m × R
m2 × · · · × R

mp

= R
M with dimensionality

M = 1−mp+1

1−m . The entire pth-order Volterra series can be written as a scalar product

in F
(p) ∑p

n=0
Hn(x) = (η(p))�φ(p)(x) (18)

7for conditions on uniqueness of the solution, see Schölkopf and Smola (2002)
8If K is not invertible, K−1 denotes the pseudo-inverse of K .
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with η(p) ∈ F
(p). Since F

(p) is generated as a Cartesian product of the single spaces
Fn, the associated scalar product is simply the weighted sum of the scalar products in
Fn:

φ(p)(x1)�φ(p)(x2) =
∑p

n=0
a2

n(x�
1 x2)n =: k(p)(x1,x2). (19)

A special case of this kernel is the inhomogeneous polynomial kernel used in the
Volterra estimation approach of Dodd and Harrison (2002)

k
(p)
inh(x1,x2) = (1 + x�

1 x2)p (20)

which corresponds to

(1 + x�
1 x2)p =

p∑
n=0

(
p
n

)
(x�

1 x2)n (21)

via the binomial theorem. If a suitably decaying weight set an is chosen, the approach
can be extended even to infinite Volterra series. For instance, for an =

√
1/n! we

obtain the well-known kernel

k(∞)(x1,x2) = ex�
1 x2 =

∑∞
n=0

1
n!

(x�
1 x2)n, (22)

or for ‖x‖ < 1, α > 0, Vovk’s infinite polynomial kernel (Saunders, Stitson, Weston,
Bottou, Schölkopf, & Smola, 1998)

kVovk(x1,x2) = (1 − x�
1 x2)−α =

∑∞
n=0

(−α
n

)
(−1)n(x�

1 x2)n. (23)

The latter two kernels have been shown to be universal, i.e., the functions of their
associated RKHS are capable of uniformly approximating all continuous functions on
compact input sets in R

m (Steinwart, 2001). As we have seen in our discussion of the
approximation capabilities of discrete Volterra series, the family of finite polynomial
kernels in its entirety is also universal since the union of their RKHSs comprises all
discrete Volterra series. Isolated finite polynomial kernels, however, do not share this
property.

Implicit Wiener series estimation. We know now that both finite and infinite dis-
cretized Volterra series can be expressed as linear operators in a RKHS. As we stated
above, the pth-degree Wiener expansion is the pth-order Volterra series that minimizes
the squared error if the input is white Gaussian noise with zero mean. This can be
put into the regression framework: assume we generate white Gaussian noise with zero
mean, feed it into the unknown system and measure its output. Since any finite Volterra
series can be represented as a linear operator in the corresponding RKHS, we can find
the pth-order Volterra series that minimizes the squared error by linear regression. This,
by definition, must be the pth-degree Wiener series since no other Volterra series has
this property9. From Eqns. (7) and (14), we obtain the following expressions for the
implicit Wiener series

G0(x) =
1
N

y�1 and
∑p

n=0
Gn(x) =

∑p

n=0
Hn(x) = y�K−1

p k(p)(x) (24)

9assuming symmetrized Volterra kernels which can be obtained from any Volterra expansion.
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where the Gram matrix Kp and the coefficient vector k(p)(x) are computed using the
kernel from Eq. (19) and 1 = (1, 1, . . . )� ∈ R

N . Note that the Wiener series and its
Volterra functionals are represented only implicitly since we are using the RKHS rep-
resentation as a sum of scalar products with the training points. Thus, we can avoid the
“curse of dimensionality”, i.e., there is no need to compute the possibly large number
of coefficients explicitly.

The explicit Volterra and Wiener expansions can be recovered at least in principle
from Eq. (24) by collecting all terms containing monomials of the desired order and
summing them up. The individual nth-order Volterra operators (p > 0) are given
implicitly by

Hn(x) = any�K−1
p kn(x) (25)

with kn(x) = ((x�
1 x)n, (x�

2 x)n, . . . , (x�
Nx)n)�. For p = 0 the only term is the

constant zero-order Volterra operator H0(x) = G0(x). The coefficient vector ηn =
(h(n)

1,1,...1, h
(n)
1,2,...1, h

(n)
1,3,...1, . . . )

� of the explicit Volterra operator is obtained as

ηn = anΦ�
n K−1

p y (26)

using the design matrix Φn = (φn(x1), φn(x2), . . . , φn(xN ))�. Note that these equa-
tions are also valid for infinite polynomial kernels such as k (∞) or kVovk. Similar
findings are known from the neural network literature where Wray and Green (1994)
showed that individual Volterra operators can be extracted from certain network models
with sigmoid activation functions which correspond to infinite Volterra series.

The individual Wiener operators can only be recovered by applying the regression
procedure twice. If we are interested in the nth-degree Wiener operator, we have to
compute the solution for the kernels k (n)(x1,x2) and k(n−1)(x1,x2). The Wiener
operator for n > 0 is then obtained from the difference of the two results as

Gn(x) =
∑n

i=0
Gi(x) −

∑n−1

i=0
Gi(x)

= y�
[
K−1

n k(n)(x) − K−1
n−1 k(n−1)(x)

]
. (27)

The corresponding ith-order Volterra operators of the nth-degree Wiener operator are
computed analogously to Eqns. (25) and (26).

Orthogonality. The resulting Wiener operators must fulfill the orthogonality condi-
tion which in its strictest form states that a pth-degree Wiener operator must be or-
thogonal to all monomials in the input of lower order. Formally, we will prove the
following

Theorem 1 The operators obtained from Eq. (27) fulfill the orthogonality condition

E [m(x)Gp(x)] = 0 (28)

where E denotes the expectation over the training set and m(x) an ith-order monomial
with i < p.

We will show that this a consequence of the least squares fit of any linear expansion
in a set of basis functions of the form of Eq. (9). In the case of the Wiener and Volterra
expansions, the basis functions ϕj(x) are monomials of the components of x.
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We denote the error of the expansion as e(x) = y−∑M
j=1 γjϕj(xi). The minimum

of the expected quadratic loss with respect to the expansion coefficient γ k is given by

∂

∂γk
E‖e(x)‖2 = −2E [ϕk(x)e(x)] = 0. (29)

This means that, for an expansion of the type of Eq. (9) minimizing the squared error,
the error is orthogonal to all basis functions used in the expansion.

Now let us assume we know the Wiener series expansion (which minimizes the
mean squared error) of a system up to degree p − 1. The approximation error is then
given by the sum of the higher-order Wiener operators e(x) =

∑∞
n=p Gn(x), so Gp(x)

is part of the error. As a consequence of the linearity of the expectation, Eq. (29) implies∑∞
n=p

E [ϕk(x)Gn(x)] = 0 and
∑∞

n=p+1
E [ϕk(x)Gn(x)] = 0 (30)

for any ϕk of order less than p. The difference of both equations yields E [ϕ k(x)Gp(x)] =
0, so that Gp(x) must be orthogonal to any of the lower order basis functions, namely
to all monomials with order smaller than p. �

For both regression and orthogonality of the resulting operators, the assumption of
white Gaussian noise was not required. In practice, this means that we can compute
a Volterra expansion according to Eq. (24) for any type of input, not just for Gaussian
noise. Note, however, that the orthogonality of the operators can be only defined with
respect to an input distribution. If we use Eq. (27) for non-Gaussian input the resulting
operators will still be orthogonal, but with respect to the non-Gaussian input distribu-
tion. The resulting decomposition of the Volterra series into orthogonal operators will
be different from the Gaussian case. As a consequence, the operators computed ac-
cording to Eq. (27) will not be the original Wiener operators, but an extension of this
concept as proposed by Barrett (1963).

Regularized estimation. So far we have not addressed the fourth problem of the
crosscorrelation procedure, namely the neglicence of measurement noise. The standard
approach in machine learning is to augment the MSE objective function in Eq. (12) with
a penalizing functional Ω, often given as a quadratic form

Ω = λγ�Rγ, λ > 0 (31)

with a positive semidefinite matrix R. R is chosen to reflect prior knowledge that can
help to discriminate the true signal from the noise. λ controls the tradeoff between the
fidelity to the data and the penalty term. The resulting Wiener series is given by∑p

n=0
Gn(x) =

∑p

n=0
Hn(x) = y�(Kp + λR)−1 k(p)(x) (32)

instead of Eq. (24). When choosing R = IN , one obtains standard ridge regression
which leads to smoother, less noise-sensitive solutions by limiting their RKHS norm.
Alternatively, Nowak (1998) suggested to selectively penalize noise-contaminated sig-
nal subspaces by a suitable choice of R for the estimation of Volterra series.

If one is interested in single Wiener operators, the regularized estimation has a
decisive disadvantage: the operators computed according to Eq. (27) are no more or-
thogonal. However, orthogonality can be still enforced by considering the (smoothed)
output of the regularized Wiener system on the training set

ỹ = y�(Kp + λR)−1 K (33)
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Figure 1: Mean squared error on the test set for varying training set size. a. First- (’x’) and
second-order (squares) crosscorrelation leads to test errors orders of magnitude higher than the
regression techniques (dots). b. Performance of the tested regression techniques (see legend) for
training set size below 75.

as modified, “noise-corrected” training set for Eq. (27) which becomes

Gn(x) = y�(Kp + λR)−1 K
[
K−1

n k(n)(x) − K−1
n−1 k(n−1)(x)

]
. (34)

The resulting Wiener operators are an orthogonal decomposition of the regularized
solution over the training set.

4 Experiments

The principal advantage of our new representation of the Volterra and Wiener series
is its capability of implicitly handling systems with high-dimensional input. We will
demonstrate this in a reconstruction task of a fifth-order receptive field. Before doing
so, we compare the estimation performance of the kernelized technique to previous
approaches.

Comparison to previous estimation techniques. Our first dataset comes from a cal-
ibration task for a CRT monitor used to display stimuli in psychophysical experiments.
The data were generated by displaying a Gaussian noise pattern (N (128, 64 2)) on the
monitor which was recorded by a cooled CCD camera operating in its linear range.
The system identification task is to quantify the nonlinear distortion of the screen and
the possible interaction with previous pixels on the same scan line. The input data were
generated by sliding a window of fixed length m in scanning direction over the lines of
the Gaussian input pattern, the system output value is the measured monitor brightness
at the screen location corresponding to the final pixel of the window.

We used three techniques to fit a Wiener model: 1. Classical crosscorrelation with
model orders 1, 2 and 3 and window size 1 to 4; 2. Direct linear regression with mono-
mials as basis functions; 3. Kernel regression with the adaptive polynomial (19), the
inhomogeneous polynomial (20), and the infinite Volterra series kernel of Eq. (22). For
2. and 3., we used the standard ridge regularizer R = IM and R = IN , respectively.
The regularization parameter λ in Eq. (31), the weights a i in the adaptive polynomial
kernel (19), the window size m and the model order p were found by minimizing the
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Figure 2: Left: 16×16 linear kernel of the test system; Right: Reconstructed linear kernel from
the fifth-order Volterra kernel by computing a preimage (after 2500 samples).

analytically computed leave-one-out error (Vapnik, 1982). We varied the number of
training examples from 10 to 1000 to characterize the convergence behaviour of the
different techniques. The independent test set always contained 1000 examples.

As the result shows (Fig. 1a), the mean squared error on the test set decreases at
a significantly faster rate for the regression methods due to the unfavorable properties
of the crosscorrelation estimator. In fact, a comparable test error could not be reached
even for the maximal test set size of 1000 (not contained in the figure). We only dis-
play the crosscorrelation results for m = 2 and p = 1, 2 which had the lowest test
error. Third-order crosscorrelation produced test (and training) errors above 10 5 on
this dataset.

We observe small, but significant differences between the tested regression tech-
niques due to the numerical conditioning of the required matrix inversion (Fig. 1b).
For a training set size above 40, the adaptive polynomial kernel performs consistently
better since the weights ai can be adapted to the specific structure of the problem. In-
terestingly, the infinite Volterra kernel shows a consistently lower performance in spite
of the higher approximation capability of its infinite-dimensional RKHS.

Reconstruction of a fifth-order LN cascade. This experiment demonstrates the ap-
plicability of the proposed method to high-dimensional input. Our example is the fifth-

order LN cascade system y =
(∑16

k,l=1 hklxkl

)5

that acts on 16×16 image patches by

convolving them with a linear kernel hkl of the same size shown in Fig. 2a before the
nonlinearity is applied. We generated 2500 image patches containing uniformly dis-
tributed white noise and computed the corresponding system output to which we added
10% Gaussian measurement noise. The resulting data was used to estimate the im-
plicit Wiener expansion using the inhomogeneous polynomial kernel (20). In classical
crosscorrelation and linear regression, this would require the computation of roughly
9.5 billion independent terms for the fifth-order Wiener kernel. Moreover, even for
much lower-dimensional problems, it usually takes tens of thousands of samples until
a sufficient convergence of the crosscorrelation technique is reached.

Even if all entries of the fifth-order Wiener kernel were known, it would be still hard
to interpret the result in terms of its effect on the input signal. The implicit represen-
tation of the Volterra series allows for the use of preimage techniques (e.g., Schölkopf
& Smola, 2002) where one tries to choose a point z in the input space such that the
nonlinearly mapped image in F, φ(z), is as close as possible to the representation in
the RKHS. In the case of the fifth-order Wiener kernel, this amounts to representing
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Figure 3: Representation of a Volterra or Wiener system by a. a cascade of a linear system
(preimage) and a static nonlinearity f(x) (e.g., (1 + x)p or ex, depending on the choice of the
kernel), b. a several parallel cascades (reduced set).

H5[x] by the operator (z�x)5 with an appropriately chosen preimage z ∈ R
256. The

nonlinear map z �→ z5 is invertible, so that we can use the direct technique described
in Schölkopf and Smola (2002) where one applies the implicitly given Volterra oper-
ator from Eq. (25) to each of the canonical base vectors of R

256 resulting in a 256-
dimensional response vector e. The preimage is obtained as z = 5

√
e. The result in

Fig. 2b demonstrates that the original linear kernel is already recognizable after using
2500 samples. The example shows that preimage techniques are capable of reveal-
ing the input structures to which the Volterra-operator is tuned, similar to the classical
analysis techniques in linear systems.

5 Conclusion

We have presented a unifying view of the traditional Wiener and Volterra theory of
nonlinear systems and newer developments from the field of kernel methods. We have
shown that all properties of discrete Volterra and Wiener theory are preserved by using
polynomial kernels in a regularized regression framework. The benefits of the new
kernelized representation can be summarized as follows:

1. The implicit estimation of the Wiener and Volterra series allows for system
identification with high-dimensional input signals. Essentially, this is due to the rep-
resenter theorem: although a higher order series expansion contains a huge number
of coefficients, it turns out that when estimating such a series from a finite sample,
the information in the coefficients can be represented more parsimoniously using an
example-based implicit representation.

2. The complexity of the estimation process is independent of the order of nonlin-
earity. Even infinite Volterra series expansions can be estimated.

3. Regularization techniques can be naturally included into the regression frame-
work to accomodate for measurement noise in the system outputs. As we have shown,
one still can extract the corresponding Wiener operators from the regularized kernel
solution while preserving their orthogonality with respect to the input. The analysis of
a system in terms of subsystems of different order of nonlinearity can thus be extended
to noisy signals.

4. Preimage techniques reveal input structures to which Wiener or Volterra opera-
tors are tuned. These techniques try to represent the system by a cascade consisting of
a linear filter followed by a static nonlinearity (Fig. 3a).
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5. As in standard linear regression, the method works also for non-Gaussian input.
At the same time, convergence is considerably faster than in the classical crosscorre-
lation procedure because the estimation is done directly on the data. Both regression
methods omit the intermediate step of estimating crosscorrelations which converges
very slowly.

The preimage method in our experiment works only for Volterra kernels of odd
order. More general techniques exist (Schölkopf & Smola, 2002), including the case of
other kernels and the computation of approximations in terms of parallel cascades of
preimages and nonlinearities (reduced sets, cf. Fig. 3b). In the case of a second-order
system, the reduced set corresponds to an invariant subspace of the Volterra operator
(cf. Hyvärinen & Hoyer, 2000). Korenberg (1983)showed that the entire class of
discrete Volterra systems can be approximated by such cascades.

Having shown that Volterra and Wiener theory can be treated just as a special case
of a kernel regression framework, one could argue that this theory is obsolete in mod-
ern signal analysis. This view is supported by the fact that, on many standard datasets
for regression, polynomial kernels are outperformed by other kernels such as, e.g., the
Gaussian kernel. So why do we not replace the polynomial kernel by some other, more
capable kernel and forget about Wiener and Volterra theory altogether? There are at
least two arguments against this point of view. First, our study has shown that, in con-
trast to other kernels, polynomial kernel solutions can be directly transformed into their
corresponding Wiener or Volterra representation. Many entries of the Volterra kernels
have a direct interpretation in signal processing applications (examples in Mathews &
Sicuranza, 2000). This interpretability is lost when other kernels are used. Second,
Wiener expansions decompose a signal according to the order of interaction of its in-
put elements. In some applications, it is important to know how many input elements
interact in the creation of the observed signals such as, for instance, in the analysis of
higher-order statistical properties (an example on higher-order image analysis can be
found in Franz & Schölkopf, 2005).
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Supérieure, 27, 193 – 216.

Giannakis, G. B., & Serpedin, E. (2001). A bibliography on nonlinear system identification.
Signal Processing, 81, 533 – 580.

Hille, E., & Phillips, R. S. (1957). Functional analysis and semi-groups. Providence: AMS.

Hyvärinen, A., & Hoyer, P. (2000). Emergence of phase- and shift-invariant features by de-
composition of natural images into independent feature subspaces. Neural Computation, 12,
1705 – 1720.

Korenberg, M. J. (1983). Statistical identification of parallel cascades of linear and nonlinear
systems. In Proc. IFAC Symp. Identification and System Parameter Estimation, pp. 669 –
674.

Korenberg, M. J., Bruder, S. B., & McIlroy, P. J. (1988). Exact orthogonal kernel estimation from
finite data records: extending Wiener’s identification of nonlinear systems. Ann. Biomed.
Eng., 16, 201 – 214.

Korenberg, M. J., & Hunter, I. W. (1990). The identification of nonlinear biological systems:
Wiener kernel approaches. Ann. Biomed. Eng., 18, 629 – 654.

Lee, Y. W., & Schetzen, M. (1965). Measurement of the Wiener kernels of a non-linear system
by crosscorrelation. Intern. J. Control, 2, 237 – 254.

Liusternik, L., & Sobolev, V. (1961). Elements of functional analysis. New York: Unger.

Mathews, V. J., & Sicuranza, G. L. (2000). Polynomial signal processing. New York: Wiley.

Nowak, R. (1998). Penalized least squares estimation of Volterra filters and higher order statis-
tics. IEEE Trans. Signal Proc., 46(2), 419 – 428.

Ogura, H. (1972). Orthogonal functionals of the Poisson process. IEEE Trans. Inf. Theory, 18(4),
473 – 481.

Palm, G. (1978). On representation and approximation of nonlinear systems. Biol. Cybern., 31,
119 – 124.

Palm, G., & Poggio, T. (1977). The Volterra representation and the Wiener expansion: validity
and pitfalls. SIAM J. Appl. Math., 33(2), 195 – 216.

Palm, G., & Poggio, T. (1978). Stochastic identification methods for nonlinear Systems: an
extension of Wiener theory. SIAM J. Appl. Math., 34(3), 524 –534.

Papoulis, A. (1991). Probablity, random variables and stochastic processes. Boston: McGraw-
Hill.

Poggio, T. (1975). On optimal nonlinear associative recall. Biol. Cybern., 19, 201 – 209.

15



Prenter, P. M. (1970). A Weierstrass theorem for real, separable Hilbert spaces. J. Approx. The-
ory, 3, 341 – 351.

Rugh, W. J. (1981). Nonlinear system theory. Baltimore: Johns Hopkins Univ. Press.

Saunders, C., Stitson, M. O., Weston, J., Bottou, L., Schölkopf, B., & Smola, A. (1998). Support
vector machine - reference manual. Tech. rep., Dept. Comp. Sc., Royal Holloway, Univ. of
London, Egham, UK.

Schetzen, M. (1965). A theory of nonlinear system identification. Intl. J. Control, 20(4), 577 –
592.

Schetzen, M. (1980). The Volterra and Wiener theories of nonlinear systems. Malabar: Krieger.

Schölkopf, B., & Smola, A. J. (2002). Learning with kernels. Cambridge, MA: MIT Press.

Segall, A., & Kailath, T. (1976). Orthogonal functionals of independent-increment processes.
IEEE Trans. Inf. Theory, 22(3), 287 – 298.

Steinwart, I. (2001). On the influence of the kernel on the consistency of support vector machines.
JMLR, 2, 67 – 93.

Vapnik, V. (1982). Estimation of dependences based on empirical data. New York: Springer.

Volterra, V. (1887). Sopra le funzioni che dipendono de altre funzioni. In Rend. R. Academia dei
Lincei 2◦Sem., pp. 97 – 105, 141 – 146, and 153 – 158.

Volterra, V. (1959). Theory of functionals and of integral and integro-differential equations. New
York: Dover.

Wiener, N. (1958). Nonlinear problems in random theory. New York: Wiley.

Wray, J., & Green, G. G. R. (1994). Calculation of the Volterra kernels of non-linear dynamic
systems using an artificial neural network. Biol. Cybern., 71, 187 – 195.

16


