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Abstract - This article presents a method for estimating a generative image model based on
Kernel Principal Component Analysis(KPCA). In contrast to other patch-based modeling ap-
proaches such as PCA, ICA or sparse coding, KPCA is capable of capturing nonlinear interac-
tions between the basis elements of the image. The original form of KPCA, however, can be
only applied to strongly restricted image classes due to the limited number of training exam-
ples that can be processed. We therefore propose a new iterative method for performing KPCA,
the Kernel Hebbian Algorithm. By kernelizing the Generalized Hebbian Algorithm, one can
iteratively estimate the Kernel Principal Components with only linear order memory complex-
ity. We demonstrate the generalization capabilities of the resulting image model in single-frame
super-resolution and denoising applications.

Index terms–Principal component analysis, Kernel methods, Image models, Image
enhancement.

1 Introduction

Prior knowledge about the statistics of specific image classes affords numerous appli-
cations in image processing such as super-resolution [1, 2], denoising [3, 4, 5], seg-
mentation [6], or compression [7]. The prior can be coded eitherimplicitly by directly
learning the mapping between input and desired output (as in [1, 2]), orexplicitly by
finding a suitable image model. In image modeling, we can roughly distinguish be-
tween approaches that try to estimate aspects of the underlying probability distribution
using a fixed set of basis elements such as wavelets [7, 4], projected profiles of objects
[8] or geometrical primitives [9, 10], and approaches that try to find basis sets with
certain optimality properties ranging from Principal Component Analysis (PCA) [11],
Independent Component Analysis (ICA) [12, 13] to sparse coding [14].

Interestingly, all of the latter approaches model images as linear combinations of
transparent basis images. Many researchers have pointed out, however, that this does
not reflect the generation process of natural images (e.g., [9]). Here, one of the main
contributing factors isocclusionwhich is highly nonlinear. This suggests the use of
techniques that can cope with nonlinear combinations of basis images. One of these
techniques isKernel Principal Component Analysis(KPCA) [15]. In contrast to lin-
ear PCA, KPCA is capable of capturing part of the higher-order statistics which are
particularly important for encoding image structure [16].

Capturing these higher-order statistics can require a large number of training ex-
amples, particularly for larger image sizes and complex image classes such as patches
taken from natural images. This causes problems for KPCA, since KPCA requires to
store and manipulate thekernel matrixthe size of which is the square of the number of
examples. To overcome this problem, a new iterative algorithm for KPCA, theKernel
Hebbian Algorithm(KHA) is introduced. It is based on the generalized Hebbian al-
gorithm (GHA) which was introduced as an online algorithm for linear PCA [17, 11].
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The resulting algorithm estimates the kernel principal components with linear order
memory complexity, making it applicable to large problems.

In this article, we focus on the computational aspects of estimating a KPCA im-
age model, and on its application in single-frame super-resolution and denoising. The
remainder of this paper is organized as follows: Section 2 briefly introduces PCA,
GHA, and KPCA. Section 3 formulates the KHA. Experimental results are presented
in Section 4 and conclusions are drawn in Section 5.

2 Principal component models

2.1 Linear principal component analysis and the Generalized Hebbian Algo-
rithm

Given a set ofl centered observationsxk = RN , k = 1, . . . , l, and
∑

l
k=1xk = 0,

PCA diagonalizes the covariance matrix1

C =
1
l

∑l

j=1
xjxj

>. (1)

For lower-dimensional data, this is readily performed by solving the eigenvalue equa-
tion λv = Cv for eigenvaluesλ ≥ 0 and eigenvectorsvi ∈ RN \ 0 (cf., e.g. [18]).
The resulting set of mutually orthogonal eigenvectors defines a new basis along the
directions of maximum variance in the data. The pairwise decorrelated expansion co-
efficients in this new basis are called theprincipal componentsof the dataset. From
the point of view of image modeling, the PCA basis has the interesting property that,
among all basis expansions, it minimizes the reconstruction error when the expansion
is truncated to a smaller number of basis vectors. Thus, a class of high-dimensional
images can be described by a low-dimensional model containing only a few principal
components.

Computationally, it can be advantageous to solve the eigenvalue problem by it-
erative methods which do not need to compute and storeC directly. This is partic-
ulary useful when the size ofC is large such that the memory complexity becomes
prohibitive. Among the existing iterative methods for PCA, the Generalized Hebbian
Algorithm (GHA) is of particular interest, since it does not only provide a memory-
efficient implementation but also has the inherent capability to adapt to time-varying
distributions. Let us define a matrixW(t) = (w1(t)>, . . . ,wr(t)>)>, wherer is the
number of eigenvectors considered andwi(t) ∈ RN . Given a random initialization of
W(0), the GHA applies the following recursive rule

W(t + 1) = W(t) + η(t)(y(t)x(t)> − LT[y(t)y(t)>]W(t)), (2)

wherex(t) is a randomly selected pattern from thel input examples, presented at time
t, y(t) = W(t)x(t). LT[·] sets all elements above the diagonal of its matrix argument
to zero, thereby making it lower triangular. It was shown in [17] forr = 1 and in [11]
for r > 1 that W(t) → Vr = (v1(t)>, . . . ,vr(t)>)> as t → ∞.2 For a detailed
discussion of the GHA, readers are referred to [11].

1More precisely, the covariance matrix is defined as the expectationE[xx>]; C is an estimate based on
a finite set of examples.

2Originally it has been shown thatwi converges to thei-th eigenvector ofE[xx>], given an infinite
sequence of examples. By replacing eachx(t) with a random selectionxi from a finite training set, we
obtain the above statement.
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The GHA has been applied in several studies to compute the principal components
of natural images [11, 19, 14]. PCA image models have been used, for instance, for im-
age coding and texture segmentation [11], and for explaining psychophysically derived
orientation tuning curves [20].

2.2 Kernel principal component analysis

Linear PCA is an appropriate model for data that are generated by a Gaussian distribu-
tion, or data that are best described by second-order correlations. In fact, PCA is based
only on second-order correlations (cf. Eq. 1) such that no higher-order statistics can
influence its result. It is well known, however, that the distribution of natural images
is highly non-gaussian, and that all the “interesting” structures in images such as edges
or corners cannot be described by second-order correlations [16]. This motivates the
use of a nonlinear analysis technique that can capture higher-order dependencies in the
data.

As a nonlinear extension of PCA, KPCA computes the principal components (PCs)
in a possibly high-dimensionalReproducing Kernel Hilbert Space(RKHS)F which is
related to the input space by a nonlinear mapΦ : RN → F [21]. An important property
of a RKHS is that the inner product of two points mapped byΦ can be evaluated using
kernel functions

k(x,y) = Φ(x) · Φ(y), (3)

which allows us to compute the value of the inner product without having to carry out
the mapΦ explicitly. Since PCA can be formulated in terms of inner products, we can
compute it also implicitly in a RKHS. Assuming that the data are centered inF (i.e.,∑l

k=1 Φ(xk) = 0)3 the covariance matrix takes the form

C =
1
l
Φ>Φ, (4)

whereΦ =
(
Φ(x1)>, . . . , Φ(xl)>

)>
. We now have to find the eigenvaluesλ ≥ 0 and

eigenvectorsv ∈ F \ 0 satisfying

λv = Cv. (5)

Forλ 6= 0, all solutionsv lie within the span of{Φ(x1), . . . , Φ(xl)} [15], and we may
consider the following equivalent problem

λΦv = ΦCv, (6)

and representv in terms of anl-dimensional vectorq as v = Φ>q. Combining
this with (4) and (6) and defining anl × l kernel matrixK by K = ΦΦ> leads to
lλKq = K2q. The solution can be obtained by solving thekernel eigenvalue problem
[15]

lλq = Kq. (7)

The resulting kernel principal components are linear combinations of inner products
of the data points, i.e., there is no need to computeΦ explicitly since everything can
be expressed in terms of kernel functions. In contrast to PCA, ICA or sparse coding,
kernel principal components consist of nonlinear interactions between the data points.

3The centering issue will be dealt with later.
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In terms of image modeling, this means that images are modeled as nonlinear combi-
nations of the input images by using the kernel function.

Note that the modeling capability of PCA is retained by KPCA: It allows for a
truncated expansion in only a few kernel principal components. However, the truncated
expansion minimizes the reconstruction error in the RKHS, not in the input space as
in linear PCA. This seems like an odd optimization principle, but it is not clear from
the outset whether the Euclidian error norm is a better error measure for such complex
objects as images. In fact, numerous applications have shown that KPCA often leads
to better models than PCA.

3 KPCA Image Model

3.1 Kernel Hebbian Algorithm

The size of the kernel matrix scales with the square of the number of examples. Thus,
it becomes computationally infeasible to directly solve the kernel eigenvalue problem
for a large number of examples. As noted in the introduction, a similar problem occurs
with linear PCA when the covariance matrix becomes large. This motivated the intro-
duction of the GHA which does not require the storage and inversion of the covariance
matrix. Here, we propose a similar approach by reformulating the GHA in a RKHS to
obtain a memory-efficient approximation of KPCA.

The GHA update rule of Eq. (2) is represented in the RKHSF as

W(t + 1) = W(t) + η(t)(y(t)Φ(x(t))> − LT[y(t)y(t)>]W(t)), (8)

where the rows ofW(t) are now vectors inF andy(t) = W(t)Φ(x(t)). Φ(x(t))
is a pattern presented at timet which is randomly selected from the mapped data
points{Φ(x1), . . . , Φ(xl)}. For notational convenience we assume that there is a func-
tion J(t) which mapst to i ∈ {1, . . . , l} ensuringΦ(x(J(t))) = Φ(xi) and denote
Φ(x(J(t))) simply byΦ(x(t)). From the direct KPCA solution, it is known thatw(t)
can be expanded in the mapped data pointsΦ(xi). This restricts the search space to
linear combinations of theΦ(xi) such thatW(t) can be expressed as

W(t) = A(t)Φ (9)

with anr× l matrixA(t) = (a1(t)>, . . . ,ar(t)>)> of expansion coefficients. Theith
row ai = (ai1, . . . , ail) of A(t) corresponds to the expansion coefficients of theith
eigenvector ofK in theΦ(xi), i.e.,wi(t) = Φ>ai(t). Using this representation, the
update rule becomes

A(t + 1)Φ = A(t)Φ + η(t)
(
y(t)Φ(x(t))> − LT[y(t)y(t)>]A(t)Φ

)
. (10)

The mapped data pointsΦ(x(t)) can be represented asΦ(x(t)) = Φ>b(t) with a
canonical unit vectorb(t) = (0, . . . , 1, . . . , 0)> in Rl (only theJ(t)-th element is 1).
Using this notation, the update rule can be written solely in terms of the expansion
coefficients as

A(t + 1) = A(t) + η(t)
(
y(t)b(t)> − LT[y(t)y(t)>]A(t)

)
. (11)

Representing (11) in component-wise form gives

aij(t + 1) =
{

aij(t) + ηyi(t)− ηyi(t)
∑i

k=1 akj(t)yk(t) if J(t) = j

aij(t)− ηyi(t)
∑i

k=1 akj(t)yk(t) otherwise,
(12)
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where

yi(t) =
l∑

k=1

aik(t)Φ(xk) · Φ(x(t)) =
l∑

k=1

aik(t)k(xk,x(t)). (13)

This does not requireΦ(x) in explicit form, thus providing a practical implementation
of the GHA inF .

During the derivation of (11), it was assumed that the data are centered inF
which is not true in general unless explicit centering is performed. Centering can
be done by subtracting the mean of the data from each pattern. Then each pattern
Φ(x(t)) is replaced bỹΦ(x(t)) := Φ(x(t)) − Φ(x), whereΦ(x) is the sample mean
Φ(x) = 1

l

∑l
k=1 Φ(xk). The centered algorithm remains the same as in (12) except

that Eq. (13) has to be replaced by the more complicated expression

yi(t) =
l∑

k=1

aik(t)(k(x(t),xk)− k̄(xk))− ai(t)
l∑

k=1

(k(x(t),xk)− k̄(xk)). (14)

with k̄(xk) = 1
l

∑l
m=1 k(xm,xk) andai(t) = 1

l

∑l
m=1 aim(t).4 This is directly

applicable in a batch setting (i.e., the patterns are fixed and known in advance); in an
online setting, one should instead use a sliding mean, in order to be able to adapt to
changes in the distribution. For the details of the online algorithm, readers are referred
to [22]. It should be noted that not only in training but also in testing, each pattern
should be centered using the training mean.

The time and memory complexity for each iteration of the KHA isO(r × l × N)
andO(r × l + l × N), respectively, wherer, l, andN are the number of principal
components to be computed, the number of examples, and the dimensionality of input
space, respectively.5 This rather high time complexity can be lowered by precomputing
and storing the whole or part of the kernel matrix. When we store the entire kernel
matrix, as KPCA does, the time complexity reduces toO(r × l).

Now we state the convergence properties of the KHA (Eq. 8) as a theorem:

Theorem 1 For a finite set of centered data (presented infinitely often) andA initially
in general position,6 (8) (and equivalently (11)) will converge with probability 1,7 and
the rows ofW will approach the first r normalized eigenvectors of the correlation
matrixC in the RKHS, ordered by decreasing eigenvalue.

The proof of theorem 1 is straightforward if we note that for a finite set of data
{x1, . . . ,xl}, we can induce from a given kernelk, ankernel PCA map[21])

Φl : x → K− 1
2 (k(x,x1), . . . , k(x,xl))

satisfying
Φl(xi) · Φl(xj) = k(xi,xj).

By applying the GHA in the space spanned by the kernel PCA map, (i.e., replacing
each occurrence ofΦ(x) with Φl(x) in Eq. 8, and noting that this time,W lies inRl

rather than inF ), we obtain an algorithm inRl which is exactly equivalent to the KHA
in F . The convergence of the KHA then follows from the convergence of the GHA in
Rl. It should be noted that, in practice, this approach cannot be taken to construct an
iterative algorithm since it involves the computation ofK− 1

2 .
4Matlab example implementation can be downloaded at http://www.kyb.tuebingen.mpg.de/prjs/compvision robotics/natimage/kha/kha.htm.
5k̄(xk) andai(t) in (14) for eachk, i = 1, . . . , l are calculated only once at the beginning of the whole

procedure and at the beginning of each iteration, respectively.
6i.e.,A is neither the zero vector nor orthogonal to the eigenvectors.
7Assuming that the input data is not always orthogonal to the initialization ofA.
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3.2 Applications

As a generic image model, KPCA can be applied to a broad range of applications. We
will demonstrate the potential of the KPCA model in two image reconstruction tasks,
single-frame super-resolution and denoising.

Single-frame super-resolution refers to the task of constructing a high-resolution
enlargement of asingle8 low-resolution, pixel-based image. In contrast to the usual
interpolation and sharpening (e.g. [24]), new high-resolution details are added to the
reconstruction. This can only be done by relying on prior knowledge about the image
class to be processed.

In previous work, single-frame super-resolution was mainly done in asupervised
learning setting [2, 25]: During the training phase, pairs of low-resolution patches and
the corresponding high-resolution patches are collected. In the super-resolution phase,
each low-resolution patch of the input image is compared to the stored low-resolution
patches and the high-resolution patch corresponding to the nearest low-resolution patch
is selected.

Here, we propose an alternative approach to super-resolution based on KPCA which
is anunsupervisedlearning method. Instead of encoding a fixed relationship between
pairs of high- and low-resolution image patches, we rely on the generic model of the
high-resolution images obtained from KPCA. To reconstruct a super-resolution image
from a low-resolution image which wasnot contained in the training set, we first scale
up the image to the same size as the high-resolution training images, then map the
image (call itx) into the RKHSF usingΦ, and project it into the KPCA subspace
corresponding to a limited number of PCs to getPΦ(x). Via the projectionP , the im-
age is mapped to an image which is consistent with the statistics of the high-resolution
training images. However, at that point the projection still lives inF which can be
infinite-dimensional. We thus need to find a corresponding point inRN — this is a
preimage problem. To solve it, we minimize‖PΦ(x) − Φ(z)‖2 overz ∈ RN . Note
that this objective function can be computed in terms of inner products and thus in
terms of the kernel (3). For the minimization, we use gradient descent [26] with start-
ing points obtained using the method of [27].

Image denoising refers to the task of constructing a noise-free image from a noisy
input image. Since image denoising is a standard problem in the image processing
community, the readers are referred to [28] for a brief survey. From the point of view
of a KPCA model, image denoising can be regarded as the same problem as image
super-resolution: the projection method from the super-resolution task can be applied
to image denoising as well. The only difference is that the scaling of input image is
omitted which is not necessary for denoising. KPCA has already been applied to digit
image denoising and demonstrated promising results [5]. This was possible because the
class of digit images is small enough for the direct computation of KPCA. Presently,
we focus on more complex image classes such as faces that require a larger number of
training examples. In these cases, the direct computation of KPCA is no more feasible
but requires the use of the KHA.

8This should not be confused withaggregation from multiple frameswhere a single high-resolution frame
is extracted from a sequence of low resolution images (cf., e.g. [23]).
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4 Experiments

From a machine learning point of view, an image is simply a point in an image space
whose dimensionality is equal to the number of pixels in the image. If the class of im-
ages is moderately constrained (e.g. face images) or if the image size is small enough,
the learning of a KPCA model poses no serious problems since the image space can
be sampled densely enough. However, for rather large images with arbitrarily high
complexity (e.g., natural images) the necessarily limited amount of training data leads
to overfitting, where one obtains a model which explains the training data perfectly
but fails to generalize to unknown data. In these cases, we adopt apatch-basedap-
proach where a large image is regarded as a composition of patches (small sub-images).
Accordingly, this section describes two distinct sets of experiments according to the
classes of images considered: thesingle-patchcase regards a small image as a single
pattern and themulti-patchcase regards a large image as a set of small patches.

The number of iterations for the convergence of the KHA depends on the data set.
The iteration finished when the squared distance between two solutions from consec-
utive iterations is smaller than a given threshold. It took around 40 and 120 iterations
for face and natural images, respectively.

Single-patch case: Super-resolution and de-noising of face images.Here we con-
sider a database of face images. The Yale Face Database B contains 5,760 images
of 10 persons [29]. 5,000 images were used for training while 10 randomly selected
images which are disjoint from the training set were used to test the method (note,
however, as there are only 10 persons in the database, the same person, in different
views, is likely to occur in training and test set). Since the direct computation of
KPCA for this dataset is not practical on standard hardware, the KHA was utilized.
In training, (60 × 60)-sized face images were fed into the KHA using a Gaussian ker-
nelk(x,y) = exp(−‖x− y‖2/2σ2) with σ = 1.

For the super-resolution experiments, the test images were blurred and subsam-
pled to a20×20 grid and scaled up to the original scale (60×60) by turning each pixel
into a3 × 3 square of identical pixels, before doing the reconstruction. Fig. 1 shows
reconstruction examples obtained using different numbers of components. For com-
parison, reconstructions obtained by linear PCA are also displayed. While the images
obtained from linear PCA look like somewhat uncontrolled superpositions of different
face images, the images obtained from its nonlinear counterpart (KHA) are more face-
like. In spite of its less realistic results, linear PCA was slightly better than the KHA in
terms of the mean squared error (average 9.20 and 8.48 for KHA and PCA, respectively
for 100 PCs). This stems from the characteristics of PCA which is constructed to min-
imize the MSE while KHA is not concerned with the MSE in the input space. Instead,
it seems to force the images to be contained in the manifold of face images. Similar
observations have been reported in [30]. Interestingly, a small number of examples and
a sparse sampling of this manifold can have the consequence that the KPCA (or KHA)
reconstruction looks like the face of person different from the one used to generate the
test image. In a sense, this means that the errors performed by KPCA are errorsalong
the manifold of faces. Fig. 2 demonstrates this effect by comparing results from KPCA
on 1,000 example images (corresponding to a sparse sampling of the face manifold)
and KHA on 5,000 training images (denser sampling). As the examples show, some
of the misreconstructions that are made by KPCA due to the lack of training examples
were corrected by the KHA using a larger training set.
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Figure 1: Face reconstruction based on PCA and KHA for varying number of principal
components.

To see the effect of varying input image resolution on the reconstruction result,
another set of experiments has been performed with different resolutions of10 × 10,
20 × 20, and40 × 40 as shown in Fig. 3. A graceful degradation of reconstruction
performance was observed from both PCA and KPCA models as the input image res-
olution decreases. However, KPCA results look constantly better than that of PCA,
especially when the input image is very small (10× 10).

For image denoising, uniform random noise was added to the test images of Fig. 1
with a SNR around 14.13dB. We applied the KPCA model used for face image super-
resolution with no additional training and no modification of the experimental setting,
except for the omission of the smoothing and resizing steps. The results (Fig. 4) indi-
cate that the proposed model is general enough to be applied to more than one specific
application, but still has acceptable performance in each of them. Compared to PCA,
the mean squared error of KPCA was again slightly worse. However, visual inspection
shows that the KPCA solutions are far more realistic.

By moving along the principal axes in the RKHS and computing the corresponding
preimages one can directly visualize what the KPCA model has learned. As an ex-
ample, Fig. 5 shows the preimages along the principal axes corresponding to the three
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Figure 2: Face reconstruction examples obtained from KPCA and KHA trained on
1,000 and 5,000 examples, respectively. Occasional erroneous reconstruction of im-
ages indicates that KPCA requires a large amount of data to properly sample the un-
derlying structure.

Figure 3: Face reconstruction based on PCA and KPCA with different input image
resolutions.

largest eigenvalues. In contrast to linear eigenfaces (i.e., eigenvectors of face images)
[31], the nonlinear eigenfaces obtained from KPCA are more face-like. This can be
explained if we assume that the data have a cluster structure and that the Gaussian
kernel parameterσ is small compared to the distances between the clusters, but large
compared to the distances within the clusters. Then KPCA becomes similar to linear
PCA performed on each cluster of similar (close in terms of the distance in input space)
images: in this case, the kernel matrix is almost block diagonal, and accordingly, the
eigenvectors of the kernel matrix become similar to the eigenvectors of each cluster.
As a result, the eigenvectors are superpositions of similar images (cf. Eq. (6)) such that
their preimages do not show the superposition artifacts usually encountered in linear
eigenfaces. On the other hand, the distance structure within a block (a set of patterns
close to each other) is similar to the Euclidean distance in the input space if the block
size is small enough.9

In addition, within the projection interval defined by the standard deviation of sam-

9This becomes evident when the functionf(z) = ez is expanded in the Taylor series about zero. When
the absolute values ofz approaches to zero, the high-order terms in the series tend to vanish such thatf
becomes linear. Thus the kernel is approximately1 − ‖x − y‖2, a conditionally positive definite kernel
which for KPCA is equal tox · y [21].
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Figure 4: Face image denoising based on PCA and KPCA with 256 principal compo-
nents.

Figure 5: Preimages of the first three eigenvectors with RKHS projections varying
from −2σ to 2σ (whereσ is the standard deviation along each principal axis). Note
that moving from−σ to σ generates a morph between two faces.

pling points along the eigenvector (Fig. 5), the eigenfaces show a morphing behavior
from one face class to another as we move along the principal axis. The corresponding
trajectory is not entirely contained in the training set, but is actuallylearnedfrom the
training samples.10 Outside this region the sampling of patterns becomes very sparse as
indicated by the increasing distance to the nearest training pattern in Fig. 6. Here, we
observe a rather uncontrolled superposition of face images similar to linear PCA. This
supports the previously mentioned manifold interpretation: assuming that the data are
sampled densely enough, the KPCA image model reconstructs the manifold defined
by the image class. Note that it has recently been pointed out that for certain kernels,
KPCA corresponds to several known manifold dimensionality reduction algorithms
[33].

Multi-patch case: Super-resolution of natural images. For a realistic natural im-
age super-resolution, we adopt the method of [25], where the large image is decom-
posed into its low-frequency components and a set of small patches containing the
local high-frequency information. Whereas Freeman et. al. [25] use a nearest neighbor
classifier to select appropriate high-frequency patches in the super-resolution phase,

10Similar observations have been reported in [32] where KPCA was used to model 3D objects from 2D
views.
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Figure 6: RKHS distance to the nearest training pattern when moving along the third
principal axis.

we replace this classifier by the projection step described above. During the training
stage, images are high-pass filtered and a set of image patches are collected from the
resulting high-frequency images. These image patches are contrast-normalized [25]
and then fed into the KHA. In the super-resolution phase, the input image is rescaled to
the original resolution using bicubic interpolation and band-pass filtered to remove the
low-frequency components. Then, the resulting high-frequency component image is di-
vided into a set of small image patches each of which is reconstructed in the same way
as in single patch super-resolution. The resulting image contains only high-frequency
components which are then superimposed on the bicubic interpolation to give the final
reconstruction.

The KHA was trained on a set of 10,000(12 × 12)-sized image patches obtained
from the images in Fig. 7. As above, theσ parameter was set to a rather small value
(1) to capture the nonlinear structure of the images. The reconstruction of the high-
frequency image is then obtained based on the first 200 KPCs. When applied to non-
overlapping patches, the resulting image as a whole shows a block structure since each
patch is reconstructed independently of its neighborhood. To reduce this effect, the
patches are chosen to slightly overlap into their neighbors such that the overlapping
regions can be averaged.

A (396×528)-size image not contained in the training set was used for testing. The
(198 × 264)-sized low-resolution image was obtained by blurring and subsampling.
Fig. 8 shows the super-resolution result. The final reconstruction was post-processed
using high-boost filtering [28] to enhance the edges that become slightly blurred since
only the first 200 KPCAs are used in the reconstruction. It should be noted that the
original KHA reconstruction of the high-frequency components still contains blocking
artifacts even with the use of overlapping patches. This, however, does not severely de-
grade the final result since the overall structure is contained in the low frequency input
image and the KHA reconstruction only adds the missing high-frequency information.
Regarding more advanced techniques for the removal of blocking artifacts, readers are
referred to [25] where the spatial relationship between patches is modeled based on
Markov random fields.

Fig. 9 shows more super-resolution results. The low resolution image is obtained
in the same way as in Fig. 8. For comparison, bicubic interpolation and the nearest
neighbor technique also have been applied. Again, for all the methods the final recon-
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Figure 7: Training images of size396 × 528. The training patterns are obtained by
sampling 2,500 points at random from each image.

structions are high-boost filtered. In comparison to image stretching (Fig. 9.b), bicubic
interpolation (Fig. 9.c) produces far better results. However simple edge enhancement
without any priori knowledge failed to completely remove the blurring effect. The
two learning-based methods show a better capability in recovering the complex local
structure, especially in the leaves.

To get a better understanding of the generalization performance of both methods,
we applied the nearest neighbor-based method to the face image super-resolution prob-
lem (i.e., single patch application) (Fig. 10). In the simple nearest neighbor reconstruc-
tion which replaces the input with the nearest stored pattern based on the Euclidean
distance in the input image space, three faces were erroneously reconstructed while the
other reconstructions are far better than those of KPCA as they happen to be near to
one of the stored patterns. The high-contrast restoration approach used for the natural
images failed to get any details. This mainly stems from the high dimensionality of
the input images (60× 60), since in this case the stored patterns are not dense enough
in the input space. As a result, high- and low-frequency components from different
images are mixed together in the reconstruction. Overall, the results indicate a better
generalization capability of KPCA as compared to nearest neighbor methods.

5 Conclusion

In this article, we proposed a generative image model based on KPCA. In contrast
to other patch-based modeling approaches, KPCA allows for nonlinear interactions
between its basis images. Moreover, KPCA is capable of capturing part of the higher-
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Figure 8: Example of natural image super-resolution: a. original image of resolution
396 × 528, b. low resolution image(264 × 198) stretched to the original scale, c. re-
construction of the high-frequency component (contrast enhanced for better visibility),
and d. final KHA reconstruction.

order statistics which are particularly important for encoding image structure. To over-
come the memory complexity of KPCA, the KHA was proposed as a method for the
efficient estimation of kernel principal components. As a kernelization of the GHA, the
KHA allows for computing KPCA without storing the kernel matrix, such that large
datasets of high dimensionality can be processed. The presented experiments suggest
that the generalization capabilities of the KPCA model exceed those of the previously
used nearest-neighbor methods.

Compared to existing super-resolution and denoising methods, the experimental
results obtained using KPCA are promising. In terms of reconstruction quality, how-
ever, it is difficult to compare our approach with the previous ones in [2] and [25]
since this largely depends on subjective assessment, not on objective quantities such
as the mean squared error (which is - as the results on PCA indicate - a poor quality
measure for images). The main difference lies in the applied learning method: the
methods proposed by Hertzmann et al. [2] and Freeman et al. [25] are based onsu-
pervisedlearning. In machine learning, it is generally believed that when feasible, a
supervised learning approach often leads to the best results. However, at the same time,
supervised algorithms can have shortcomings in that the data may be more expensive
to obtain (since they require inputsand outputs), and the solution can be less flexible
in that it is only useful for the exact task considered. This means that once trained on
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Figure 9: Comparison between different super-resolution methods: a. original image
of resolution396× 528 , b. low resolution image(264× 198) stretched to the original
scale, c. bicubic interpolation, d. supervised example-based learning based on nearest
neighbor classifier, e. unsupervised KHA reconstruction of high-frequency component
(contrast enhanced for better visibility), and f. unsupervised KHA reconstruction.
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Figure 10: Face image super-resolution based on nearest neighbor methods [25]. First
and second rows: original and low-resolution input images, respectively. Third row:
reconstructions obtained by replacing the KPCA with a nearest neighbor classifier in
the single patch reconstruction experiments. Fourth row: reconstructions obtained by
the multi-patch reconstruction method applied to the input image as a single patch.
Fifth row: reconstructions obtained by the KPCA.

a training set containing labeled data, the above methods can only be used for the one
image super-resolution task it was trained for. In contrast, our image model, which
is only trained on high-resolution images, can be directly applied to a variety of im-
age restoration tasks, including denoising and image super-resolution using inputs of
various resolutions, without retraining.

There are various directions for further work. The KHA, as a general iterative al-
gorithm of KPCA applicable to large datasets, can significantly enlarge the application
area of KPCA, which as a generic machine learning technique also enjoys some pop-
ularity in other fields. With respect to image modeling, the best choice of the kernel
remains elusive. We still do not know which higher-order statistics are important for
coding image content. It is also unclear to what extent the different available kernels
are capable of modeling the occlusion and superposition phenomena that contribute to
the generation of an image. A further investigation of these questions could lead to the
design of new kernels that specifically incorporate the generation principles of natural
images.
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