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1 Introduction

In this paper, we consider the expansion of a multivariate polynomial into Bern-
stein polynomials over a box, i.e., an axis-aligned region, in R

n. This expansion
has many applications, e.g., in computer aided geometric design, robust control,
global optimization, differerential and integral equations, finite element analysis
[6]. A very useful property of this expansion is that the interval spanned by the
minimum and maximum of the coefficients of this expansion, the so-called Bern-
stein coefficients, provides bounds for the range of the given polynomial over the
considered box, see, e.g., [8,10]. A simple (but by no means economic) method
for the computation of the Bernstein coefficients from the coefficients of the given
polynomial is the use of formula (5) below. This formula (and also similar ones
for the Bernstein coefficients over more general sets like sinplexes and polytopes)
allows the symbolic computation of these quantities when the coefficients of the
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given polynomial depend on parameters. Some applications are making use of
this symbolic computation: in [4, Sections 3.2 and 3.3], [5], see also the many
references therein, the reachability computation and parameter synthesis with
applications in biological modelling are considered. In [2,3], parametric polyno-
mial inequalities over parametric boxes and polytopes are treated. Applications
in static program analysis and optimization include dependence testing between
references with linearized subscripts, dead code elimination of conditional state-
ments, and estimation of memory requirements in the development of embedded
systems. Applications which involve polynomials of higher degree or many vari-
ables require a computation of the Bernstein coefficients which is more economic
than by formula (5). In [14] and [16], we have presented a matrix method for
the computation of the Bernstein coefficients which is faster than the methods
developed so far. In this paper, we consider firstly the case where we have already
computed the Bernstein coefficients of two multivariate polynomials and wish
to compute the Bernstein expansion of their product for which we present two
approaches. For the univariate case see [7, Subsection 4.2]. Secondly, we show
how the Bernstein coefficients of a multivariate polynomial can be computed
from the Bernstein coefficients of its partial derivatives. This problem appears
for example when bounds for the range of a complex polynomial over a rectangu-
lar region in the complex plane are wanted and the Cauchy-Riemann equations
are employed, see [13, Section 4.3], [17], but it is also of interest by its own.

The organization of our paper is as follows. In the next section, we introduce
the notation which is used throughout the paper. In Sect. 3, we first briefly recall
the expansion of a multivariate real polynomial into Bernstein polynomials over
a box and some of its fundamental properties. In the second part, we recall from
[14,16] amatrixmethod for the computation of theBernstein coefficients. In Sect. 4
we present two matrix methods for the computation of the Bernstein coefficients
of the product of two polynomials and in Sect. 5 the computation of the Bernstein
coefficients of a polynomial from those of one of its partial derivatives.

2 Notation

In this section, we introduce the notation that we are using throughout this paper.
Let n ∈ N (set of the nonnegative integers) be the number of variables. A multi-
index (i1, . . . , in) ∈ N

n is abbreviated by i. In particular, we write 0 for (0, . . . , 0)
and es for the multi-index that has a 1 in position s and 0’s otherwise. Arithmetic
operations with multi-indices are defined entry-wise; the same applies to compar-
ison between multi-indices. For the multi-index i = (i1, . . . , is, . . . , in) we define
is,q := (i1, . . . , is +q, . . . , in) and i[s,q] := (i1, . . . , q, . . . , in), s ∈ {1, . . . , n} , q ∈ Z.

For x = (x1, . . . , xn) ∈ R
n, its monomials are defined as xi :=

n∏

s=1

xis
s . For

d = (d1, . . . , dn) ∈ N
n such that i ≤ d, we use the compact notations

d∑

i=0

:=
d1∑

i1=0

. . .

dn∑

in=0

,

(
d

i

)

:=
n∏

s=1

(
ds

is

)

.

For the ease of presentation, we index all array entries starting from zero.
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3 Bernstein Expansion

3.1 Bernstein Representation over the Unit Box

In this section, we present fundamental properties of the Bernstein expansion
over a box, e.g., [6, Subsection 5.1], [8,10], that are employed throughout the
paper. For simplicity we consider the unit box u := [0, 1]n, since any compact
nonempty box x of R

n can be mapped affinely onto u . Let � ∈ N
n, aj ∈ R,

j = 0, . . . , �, such that for s = 1, . . . , n

�s := max
{
q | aj1,...,js−1,q,js+1,...,jn �= 0

}
. (1)

Let p be an �-th degree n-variate polynomial with the power representation

p(x) =
�∑

j=0

ajx
j . (2)

We expand p into Bernstein polynomials of degree d, d ≥ �, over u as

p(x) =
d∑

j=0

b
(d)
j B

(d)
j (x), (3)

where B
(d)
j is the j-th Bernstein polynomial of degree d, defined as

B
(d)
j (x) :=

(
d

j

)

xj(1 − x)d−j , (4)

and b
(d)
j is the j-th Bernstein coefficient of p of degree d over u which is given by

b
(d)
j =

j∑

i=0

(
j
i

)

(
d
i

)ai, 0 ≤ j ≤ d, (5)

with the convention that ai := 0 if i ≥ �, i �= �. We call (3) the Bernstein
representation of p and arrange the Bernstein coefficients in a multidimensional
array B(u) = (b(d)j )0≤j≤d, the so-called Bernstein patch. Note that the Bernstein
coefficients lying on the vertices of B(u) are values of p at the respective vertices
of u . More generally, the Bernstein coefficients on an r-dimensional face of u ,
r = 0, 1, . . . , n−1, are just the Bernstein coefficients lying on the respective faces
of B(u) [9, Lemma 2]. E.g., assume that v is an (n − 1)-dimensional face of u
that is obtained by setting xs = 0 or 1, for some s ∈ {1, . . . , n}. For i ∈ N

n and
r ∈ N we define

i[s,r] := (i1, . . . , is−1, r, is+1, . . . , in). (6)

Then, the Bernstein coefficients of p over v are given by

b
(d)
i (p, v) =

{
bi[s,0] , if xs = 0,
bi[s,ds] , if xs = 1.
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3.2 Computation of the Bernstein Coefficients

We recall from [16] a method for the computation of the Bernstein coefficients
of the n-variate polynomial p given in (2).

Matrix Method for the Unit Box. The superscript c denotes the cyclic
ordering of the sequence of the indices, i.e., the order of the indices of the entries
of the array under consideration is changed cyclically. This means that the index
in the first position is replaced by the index in the second one, the index in the
second position by the one in the third, . . . , the index in the n-th position
by the one in the first position (see Fig. 1 as an illustration in the trivariate
case). So after n cyclic orderings the sequence of the indices is again in its initial
order. Note that in the bivariate case the cyclic ordering is just the usual matrix
transposition.

Fig. 1. Cyclic ordering of a three-dimensional array with �1 = 1, �2 = 2, and �3 = 3
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The coefficients of p are arranged in an (�1 + 1) × �∗ matrix A, where �∗ :=
n∏

s=2

(�s + 1). The correspondence between the coefficients aj of p and the entry

of A in row i and column j is as follows:

i = j1, (7a)

j = j2 +
n∑

s=3

js(�2 + 1) · . . . · (�s−1 + 1). (7b)

Then A can be represented as the matrix

⎡

⎢
⎢
⎢
⎣

a0,0,0,...,0 a0,1,0,...,0 . . . a0,�2,0,...,0 a0,0,1,...,0 . . . a0,�2,1,...,0 . . .
a1,0,0,...,0 a1,1,0,...,0 . . . a1,�2,0,...,0 a1,0,1,...,0 . . . a1,�2,1,...,0 . . .

...
... . . .

...
... . . .

... . . .
a�1,0,0,...,0 a�1,1,0,...,0. . . a�1,�2,0,...,0 a�1,0,1,...,0 . . . a�1,�2,1,...,0 . . .

(8)

. . . a0,0,�3,...,0 . . . a0,�2,�3,...,0 . . . a0,0,�3,...,�n a0,1,�3,...,�n . . . a0,�2,�3,...,�n

. . . a1,0,�3,...,0 . . . a1,�2,�3,...,0 . . . a1,0,�3,...,�n a1,1,�3,...,�n . . . a1,�2,�3,...,�n

. . .
... . . .

... . . .
...

... . . .
...

. . . a�1,0,�3,...,0 . . . a�1,�2,�3,...,0 . . . a�1,0,�3,...,�n a�1,1,�3,...,�n . . . a�1,�2,�3,...,�n

⎤

⎥
⎥
⎥
⎦

.

The matrix Λ(u) is obtained from A by multiplying aj by
(

�
j

)−1
. We put Λ0 :=

Λ(u) and define for s = 1, . . . , n

Λs := (PsΛs−1)c, (9)

where Ps is the lower triangular Pascal matrix,

(Ps)ij :=

{(
i
j

)
, if j ≤ i,

0, otherwise.
(10)

In (9), the matrix multiplication is performed according to the factorization,
e.g., [1, Lemma 1],

Ps =
�s∏

μ=1

Ks
μ, (11)

where the bidiagonal matrices Ks
μ, μ = 1, . . . , �s, are given by

(Ks
μ)ij :=

⎧
⎪⎨

⎪⎩

1, if i = j,

1, if i = j + 1, �s − μ ≤ j ≤ �s − 1,

0, otherwise.
(12)
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Define for s = 1, . . . , n, r := s mod n. Then for s = 1, . . . , n, the entry in
position (v1, v2) in Λs−1 becomes (v ′

1 , v ′
2 ) in Λs, where

v ′
1 = v2 mod (�r+1 + 1),

v ′
2 =

⌊
v2

�r+1 + 1

⌋

+ v1

n∏

m=1,
m �=s,r

(�m + 1).

The Bernstein patch B(u) arranged accordingly in the (�1 + 1) × �∗ Bernstein
matrix, denoted by B(u), is given by Λn.

Matrix Method for a General Box. Firstly, we affinely map a given box x ,

x = ([xs, xs])n
s=1, with xs < xs, s = 1, . . . , n, (13)

to the unit box u by

zs =
xs − xs

xs − xs

, s = 1, . . . , n. (14)

We sequentially transform xs, s = 1, . . . , n. By substituting (14) in (2) for
one xs, s = 1, . . . , n, at a time, we obtain a polynomial p� over u . The coefficients
of p� arranged in an (�1 + 1) × �� matrix, say A�, can be derived as follows from
the matrix A of the coefficients of p given in (8): For s = 1, . . . , n define

Qs :=

{
D̃s(

xs−xs

xs
)PT

s D̃s(xs), xs �= 0,

D̃s(xs), xs = 0,
(15)

where D̃s(t) is the diagonal matrix of order �s + 1

D̃s(t) := diag(1, t, t2, . . . , t�s), s = 1, . . . , n.

Then A� can be represented as

A� = (Qn(· · · (Q2(Q1A)c)c · · · )c)c. (16)

By applying the procedure for the unit box to the matrix A�, we obtain the
Bernstein patch of p over x .

Amount of Arithmetic Operations. Assuming that κ = �s for all s =
1, . . . , n, the presented matrix method requires nκ (κ+1)n

2 additions and n(κ+1)n

multiplications for the computation of the Bernstein coefficients over the unit box
u , and needs nκ(κ+1)n+n additions and 3n(κ+1)n+2n(κ−1)+n multiplications
for a general box. A verified version of this method which is taking into account
of all rounding errors as well as data uncertainties was implemented by Dr.
Florian Bünger, Hamburg University of Technology, Germany. It is included in
the version 12 of the MATLAB toolbox INTLAB [11].
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4 Computation of the Bernstein Coefficients of the
Product of Two Multivariate Polynomials

Let p and q be two n-variate polynomials of degree �(p) and �(q), respectively,
with the Bernstein expansions of degrees d(p) ≥ �(p) and d(q) ≥ �(q) over x

p(x) =
d(p)∑

j=0

bj(p)B(d(p))
j (x), (17a)

q(x) =
d(q)∑

i=0

bi(q)B
(d(q))
i (x). (17b)

For the ease of presentation we consider here only the unit box u and assume that
d(p) = �(p) and d(q) = �(q). Then, the polynomial pq resulting when multiplying
p and q is of degree � = �(p) + �(q). Hence, the Bernstein representation of pq
over u is given as

pq(x) =
�∑

m=0

bm(pq)B(�)
m (x), (18)

where bm(pq) is the m-th Bernstein coefficient of pq of degree � over u ,
m = 0, . . . , �. Let B(p,u), B(q,u), and B(pq,u) denote the Bernstein patches
of p, q, and pq over u , respectively, and their corresponding Bernstein matri-
ces are given by B(p,u), B(q,u) and B(pq,u). In this section, we present two
matrix methods, which are named the first method and second method, for the
computation of the Bernstein coefficients bm(pq) of pq.

4.1 First Method

By this method the Bernstein coefficients of pq are computed from the Bern-
stein representation of p and q. The representations (17a) and (17b) can be
rewritten as

p(x) = (1 − x)�(p)

�(p)∑

j=0

cj(p)
(

x

1 − x

)j

, (19a)

q(x) = (1 − x)�(q)

�(q)∑

i=0

ci(q)
(

x

1 − x

)i

, (19b)

where cj(p) and ci(q) are called the scaled Bernstein coefficients of p and q which
are given by

cj(p) = bj(p)
(

�(p)
j

)

, j = 0, . . . , �(p), (20a)

ci(q) = bi(q)
(

�(q)
i

)

, i = 0, . . . , �(q). (20b)
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From (19a) and (19b), the power representation of pq is obtained as

pq(x) = (1 − x)�
�∑

m=0

cm

(
x

1 − x

)m

,

where the m-th scaled Bernstein coefficient cm of pq is given as

cm =
m∑

μ=0

cμ(p)cm−μ(q), m = 0, . . . , �, (21)

with cμ(p) := 0 if μs > �s(p) and cμ(q) := 0 if μs > �s(q) for some s ∈ {1, . . . , n}.
Then, from (21) the m-th Bernstein coefficient of pq is

bm(pq) =
cm
(

�
m

) , 0 ≤ m ≤ �. (22)

In matrix language, the first method can be described as follows: let for s =
1, . . . , n, the diagonal matrix Ds of order �s(p) + 1 be defined by

Ds := diag
((

�s(p)
0

)

,

(
�s(p)

1

)

, . . . ,

(
�s(p)
�s(p)

))

, (23)

and let C(p) be the (�1(p) + 1) × ��(p) matrix, where ��(p) :=
n∏

s=2

(�s(p) + 1),

which is obtained by

C(p) = (Dn(· · · (D2(D1B(p,u))c)c · · · )c)c. (24)

It is easy to see that (C(p))q1,q2 = cj(p), q1 = 0, . . . , �1(p), q2 = 0, . . . , ��(p) − 1
and j = 0, . . . , �(p), where the correspondence between the scaled Bernstein
coefficient cj(p) and the entries of C(p) can be determined by using (7).

Let us define for s = 1, . . . , n, t = 0, . . . , �s(q), the following (�s+1)×(�s(p)+1)
matrices W

(t)
s row-wise by

W (t)
s [0, . . . , t − 1] := 0,

W (t)
s [t, . . . , �s(p) + t] := I�s(p)+1 (identity matrix of order �s(p) + 1),

W (t)
s [�s(p) + t + 1, . . . , �s] := 0;

as a convention, we define for t = 0, �s(q)

W (t)
s [0, . . . ,−1] = φ,

W (t)
s [�s + 1, . . . , �s] = φ,

where φ is a matrix of size 0 × 0. Assume that the scaled Bernstein coefficients

of pq, see (21), are arranged in the (�1+1)×�� matrix C(pq), with �� =
n∏

s=2

(�s+1)

that is given by

C(pq) =

�n(q)∑

in=0

· · ·
�1(q)∑

i1=0

(
W (in)

n

(
· · ·

(
W

(i2)
2

(
W

(i1)
1 ci1,...,in(q)C(p)

)c)c

· · ·
)c)c

(25)
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such that (C(pq))q1,q2 = cm, q1 = 0, . . . , �1, q2 = 0, . . . , �� − 1, and m =
0, . . . , �. Here, the relation between the entries of C(pq) and the scaled Bernstein
coefficients of pq, cm, m = 0, . . . , �, can be determined as in (7). From (25),
we get

B(pq,u) =
(
D′

n

(· · · (D′
2 (D′

1C(pq))c)c · · · )c
)c

, (26)

where D′
s is the inverse of the diagonal matrix diag

((
�s
0

)
,
(
�s
1

)
, . . . ,

(
�s
�s

))
for

s = 1, . . . , n. A pseudocode for the first method is given in Algorithm 1. Its
performance is illustrated in Appendix A.

4.2 Second Method

Let aj(p) and ai(q) be the j-th and the i-th coefficients of the power represen-
tations of p and q, respectively, such that j = 0, . . . , �(p) and i = 0, . . . , �(q).
Assume that aj(p) are arranged in an (�1(p) + 1) × ��(p) matrix A(p). Recall
that pq is an n-variate polynomial of degree �. Then the power representation
of pq is given by

pq(x) =
�∑

m=0

amxm. (27)

We arrange the coefficients of pq in an (�1 + 1) × �� matrix Â. In this method,
the computation of the Bernstein coefficients of pq, see (18), is based on its
power representation (27). The matrix description of this method is as follows:
the entries of Â are the entries of the matrix that is obtained from (25), where
the (r1, r2)-th entry of C(p) is replaced by the (r1, r2)-th entry of A(p), where
r1 = 0, . . . �1(p), r2 = 0 . . . , ��(p)−1, and ci(q) is replaced by ai(q), 0 ≤ i ≤ �(q).
Then the method presented in Subsect. 3.2 is applied to compute the Bernstein
coefficients of pq starting from Â.

4.3 Amount of Arithmetic Operations

In Tables 1 and 2, the number of the arithmetic operations of both methods
are presented. For simplicity, we assume that �s(p) = �s(q) = κ for s = 1, . . . , n.
Furthermore, we use the method from Subsect. 3.2 for the computation of B(p,u)
and B(q,u) in the first method, see (24), and B(pq,u) in the second method.

For the ease of comparison, we assume that the basis operations (addition,
multiplication, and division) are taking the same time. Then we conclude that
for n ≥ 4 and κ = 1, n ≥ 2 and κ = 2, 3, and for all n and κ ≥ 4 the first method
is superior to the second method. In addition, the first method has the advantage
that all computations are performed ab initio in the Bernstein representation so
that the numerical stability of this representation with respect to perturbations
of initial data, or rounding errors that occur during floating point calculations
can be fully employed, see [6, Section 6].
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Algorithm 1. First method for the computation of the Bernstein coefficients of
pq over the unit box u

1: Input: The coefficients of the power representation of p and q over u
2: Output: The matrix B(pq,u) containing the Bernstein coefficients of pq over u
3: Step 1: Compute the Bernstein coefficients of p, q and arrange them in matrices
4: B(p,u) and B(q,u), respectively, by using the method from Subsection 3.2.
5: Step 2: Compute C(p).
6: Put C0(p) := B(p,u).
7: for s = 1, . . . , n do
8: Compute Cs(p) := (DsCs−1(p))c.
9: end for

10: Put C0(pq) := O.
11: Step 3: Computation of C(pq)
12: for i1 = 0, . . . , �1(q) do

13:
. . .

14: for in = 0, . . . , �n(q) do

15: Put M
(i)
0 := ci(q)Cn(p), where ci(q) is given by (20b).

16: for r = 1, . . . , n do
17: M

(i)
r := (W

(ir)
r M

(i)
r−1)

c.
18: end for
19: C0(pq) := M

(i)
n + C0(pq).

20: end for

21:
...

22: end for
23: Step 4: Computation of B(pq,u)
24: Put F0 := C0(pq).
25: for s = 1, . . . , n do
26: Compute Fs := (D′

sFs−1)
c, see (26).

27: end for
28: Put B(pq,u) := Fn.
29: Step 5: End of the algorithm

Table 1. Number of real arithmetic operations required to obtain B(pq,u) by the first
method

Calculation of Number of additions Number of multi-
plications/divisions

B(p,u) and B(q,u) by the
method in Subsect. 3.2

nκ(κ + 1)n 2n(κ + 1)n

C(p) 0 n(κ + 1)n

C(pq) (κ + 1)n[(κ + 1)n − 1]− nκ(κ + 1)n−1 (κ + 1)2n

B(pq,u) 0 n(2κ + 1)n
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Table 2. Number of arithmetic operations to obtain B(pq,u) by the second method

Calculation of Number of additions Number of multi-
plications/divisions

C(pq) (κ + 1)n[(κ + 1)n − 1]− nκ(κ + 1)n−1 (κ + 1)2n

B(pq,u) by the method in
Subsect. 3.2

nκ(2κ + 1)n n(2κ + 1)n

5 Matrix Method for the Computation of the Bernstein
Coefficients of a Multivariate Polynomial from Those
of One of Its Partial Derivatives

Let p be an n-variate polynomial of degree � with the power representation
given as in (2). Assume that its coefficients are arranged in the matrix A, which
is presented in (8). We expand p into Bernstein polynomials of degree d, d ≥ �,
over the box x (13) as in (3). Without loss of generality, we assume that d = �.
Recall that the Bernstein representation of the first partial derivative of p with
respect to xs, s ∈ {1, . . . , n}, is given by

∂p

∂xs
=

∑

i≤�s,−1

b̃
(�s,−1)
i B

(�s,−1)
i (x), (28)

where for j = 0, . . . , �s,−1

b̃
(�s,−1)
j = �s(b

(�)
js,1

− b
(�)
j ) (29)

denotes the j-th Bernstein coefficient of ∂p
∂xs

of degree �s,−1 over x , i.e., the Bern-
stein coefficients of ∂p

∂xs
can be obtained from differences between its successive

Bernstein coefficients, e.g., [9, formula (4)].
Assume that the Bernstein coefficients of ∂p

∂xs
, s ∈ {1, . . . , n}, are given and

are arranged in the Bernstein patch B( ∂p
∂xs

,x ). In the following, we present a
matrix method by which the Bernstein patch B(p,x ) that comprises the Bern-
stein coefficients of p over x can be computed using B( ∂p

∂xs
,x ). Without loss of

generality, we assume that s = 1. From (29), it follows that

b
(�)
i1,1

=
b̃
(�1,−1)
i

�1
+ b

(�)
i , i = 0, . . . , �1,−1. (30)

In other words, for computing B(p,x ) it is sufficient to compute the Bernstein
coefficients b

(�)
i[1,0]

, see (6), then the remaining coefficients can be obtained iter-

atively using (30). The coefficients b
(�)
i[1,0]

are the Bernstein coefficients of p for
x1 = x1. By the face value property of the Bernstein coefficients, see Subsect. 3.1,
these coefficients are identical to those that are located at the corresponding
(n − 1)-dimensional face of B(p,x ); they are obtained from B(p,x ) by firstly



594 J. Titi and J. Garloff

freezing p on the face of x with x1 = x1 and then computing the Bernstein
coefficients of the resulting polynomial. In matrix language, the computation is

as follows. Denote by C1 the row vector of length ��, where �� =
n∏

s=2

(�s + 1),

that contains the coefficients of p such that x1 = x1. For μ = 1, . . . , �1, we define
the elementary bidiagonal matrices Hμ(x) ∈ R

μ,μ+1 by

(Hμ(x))i,j :=

⎧
⎪⎨

⎪⎩

1, i = j,

x, i = μ, j = μ + 1,

0, otherwise.
(31)

Then, C1 can be obtained as

C1 = H1(x1) · · · H�1−1(x1)H�1(x1)A. (32)

From C1, we define the (�2 + 1) ×
n∏

r=3

(�r + 1) matrix A1 with coefficients given

for q1 = 0, . . . , �2 and q2 = 0, . . . ,
n∏

r=3

(�r + 1) − 1 by

(A1)q1,q2 := (C1)q1+q2(�2+1)+1. (33)

Then the method from Subsect. 3.2 for the computation of the Bernstein coeffi-
cients of p on the face of x with x1 = x1 starting from A1 is applied. We denote
the resulting matrix by B1 and arrange its entries in the row vector C ′

1 of length

��, such that for r1 = 1, . . . , ��, v1 = 0, . . . , �2, and v2 = 0, . . . ,
n∏

r=3

(�r + 1) − 1,

we have

(C ′
1)r1 = (B1)v1,v2 , (34)

where

r1 = v1 + v2(�2 + 1) + 1.

Let B′
1 be the (�1 + 1) × �� matrix defined for r1 = 0, . . . , �1 and r2 =

0, . . . , �� − 1 by

(B′
1)r1,r2 =

{
(C ′

1)r2+1, if r1 = 0,

( 1
�1

B( ∂p
∂xs

,x ))r1−1,r2 , if r1 = 1, . . . , �1.
(35)

For μ = 1, . . . , �1, we define the square matrices H
(1)
μ of order �1 + 1, such that

for rv = 0, . . . , �1, v = 1, 2, it is given by

(H(1)
μ )r1,r2 :=

⎧
⎪⎨

⎪⎩

1, r1 = r2,

1, r1 = �1 − μ + 1, r2 = �1 − μ,

0, otherwise.
(36)
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Then, the Bernstein matrix B(p,x ) that comprises the Bernstein coefficients of p
of degree � over x , can be calculated by

B(p,x ) = H
(1)
1 · · · H(1)

�1−1H
(1)
�1

B′
1, (37)

where the correspondence between B(p,x ) and B(p,x ) can be determined by
using (7). As a consequence of our initial assumption, for computing B(p,x )
from B( ∂p

∂xs
,x ), where s ∈ {2, . . . , n}, we firstly employ the cyclic ordering with

respect to xs, in such a way that the multiplications in (32) and (37) are well
defined.

In Table 3, the number of arithmetic operations needed for the computation
of B(p,x ) is presented. For simplicity, we assume here that �s = κ, s = 1, . . . , n.

Table 3. Number of real arithmetic operations required to obtain B(p, x ) from one of
the partial derivatives of p

Calculation of Number of additions Number of multipli-
cations/divisions

C1 by (32) κ(κ + 1)n−1 κ(κ + 1)n−1

B1 over a general box x ′

which is obtained from x by
freezing x1 = x1 using the
method in Subsect. 3.2

(n − 1)κ(κ + 1)n−1 + n − 1 3(n− 1)(κ + 1)n−1 +
2(n−1)(κ−1)+n−1

B′
1 by (35) 0 κ(κ + 1)n−1

B(p, x ) by (37) κ(κ + 1)n−1 0

In total, the computation of B(p,x ) requires (n + 1)κ(κ + 1)n−1 + n − 1
additions and 2κ(κ + 1)n−1 + 3(n − 1)(κ + 1)n−1 + 2(n − 1)(κ − 1) + n − 1
multiplications.

Appendix A. Example for the Performance of Algorithm1

Let p and q be bivariate polynomials of degree (4, 2) and (3, 2), respectively, with
Bernstein matrices over u

B(p,u) =

⎡

⎢
⎢
⎢
⎢
⎣

2 0 −1
−2 3 0

1 3 −3
1 0 1
0 −1 0

⎤

⎥
⎥
⎥
⎥
⎦

and B(q,u) =

⎡

⎢
⎢
⎣

−1 −4 −1
2 0 5

−2 3 0
0 1 1

⎤

⎥
⎥
⎦ .
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Then

D1 = diag(1, 4, 6, 4, 1) and D2 = diag(1, 2, 1),

C1(p) = (D1C0(p))c =

⎡

⎣
2 −8 6 4 0
0 12 18 0 −1

−1 0 −18 4 0

⎤

⎦ ,

C2(p) = (D2C1(p))c =

⎡

⎢
⎢
⎢
⎢
⎣

2 0 −1
−8 24 0

6 36 −18
4 0 4
0 −2 0

⎤

⎥
⎥
⎥
⎥
⎦

;

M
(1,1)
0 = M

(2,2)
0 = M

(3,0)
0 = O5,3,

M
(0,0)
0 =

⎡

⎢
⎢
⎢
⎢
⎣

−2 0 1
8 −24 0

−6 −36 18
−4 0 −4

0 2 0

⎤

⎥
⎥
⎥
⎥
⎦

, M
(0,1)
0 =

⎡

⎢
⎢
⎢
⎢
⎣

−16 0 8
64 −192 0

−48 −288 144
−32 0 −32

0 16 0

⎤

⎥
⎥
⎥
⎥
⎦

, M
(0,2)
0 =

⎡

⎢
⎢
⎢
⎢
⎣

−2 0 1
8 −24 0

−6 −36 18
−4 0 −4

0 2 0

⎤

⎥
⎥
⎥
⎥
⎦

,

M
(1,0)
0 =

⎡

⎢
⎢
⎢
⎢
⎣

12 0 −6
−48 144 0

36 216 −108
24 0 24
0 −12 0

⎤

⎥
⎥
⎥
⎥
⎦

, M
(1,2)
0 =

⎡

⎢
⎢
⎢
⎢
⎣

30 0 −15
−120 360 0

90 540 −270
60 0 60
0 −30 0

⎤

⎥
⎥
⎥
⎥
⎦

,

M
(2,0)
0 =

⎡

⎢
⎢
⎢
⎢
⎣

−12 0 6
48 −144 0

−36 −216 108
−24 0 −24

0 12 0

⎤

⎥
⎥
⎥
⎥
⎦

, M
(2,1)
0 =

⎡

⎢
⎢
⎢
⎢
⎣

36 0 −18
−144 432 0

108 648 −324
72 0 72
0 −36 0

⎤

⎥
⎥
⎥
⎥
⎦

,

M
(3,1)
0 =

⎡

⎢
⎢
⎢
⎢
⎣

4 0 −2
−16 48 0

12 72 −36
8 0 8
0 −4 0

⎤

⎥
⎥
⎥
⎥
⎦

, M
(3,2)
0 =

⎡

⎢
⎢
⎢
⎢
⎣

2 0 −1
−8 24 0

6 36 −18
4 0 4
0 −2 0

⎤

⎥
⎥
⎥
⎥
⎦

;
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M
(0,0)
1 =

⎡

⎣
−2 8 −6 −4 0 0 0 0

0 −24 −36 0 2 0 0 0
1 0 18 −4 0 0 0 0

⎤

⎦ , M
(0,0)
2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2 0 1 0 0
8 −24 0 0 0

−6 −36 18 0 0
−4 0 −4 0 0

0 2 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

M
(0,1)
1 =

⎡

⎣
−16 64 −48 −32 0 0 0 0

0 −192 −288 0 16 0 0 0
8 0 144 −32 0 0 0 0

⎤

⎦ , M
(0,1)
2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 −16 0 8 0
0 64 −192 0 0
0 −48 −288 144 0
0 −32 0 −32 0
0 0 16 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

M
(0,2)
1 =

⎡

⎣
−2 8 −6 −4 0 0 0 0

0 −24 −36 0 2 0 0 0
1 0 18 −4 0 0 0 0

⎤

⎦ , M
(0,2)
2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 −2 0 1
0 0 8 −24 0
0 0 −6 −36 18
0 0 −4 0 −4
0 0 0 2 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The remaining 18 matrices M
(i)
s , s = 1, 2, are formed analogously.

F0 = C0(pq) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2 −16 −1 8 1
20 40 −160 −24 −15

−66 96 −390 450 18
80 −100 408 506 −275

−12 −122 896 −298 60
−24 72 54 42 −18

0 20 −32 8 4
0 0 4 −2 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

;

D′
1 = diag(1,

1
7
,

1
21

,
1
35

,
1
35

,
1
21

,
1
7
, 1), D′

2 = diag(1,
1
4
,
1
6
,
1
4
, 1).
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The Bernstein matrix of the product of the polynomials p and q is given by

B(pq,u) = F2 = (D′
2(D

′
1F0)c)c =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2 −4 −1
6 2 1

20
7

10
7

−80
21

−6
7

−15
7

−22
7

8
7

−65
21

75
14

6
7

16
7

−5
7

68
35

253
70

−55
7

−12
35

−61
70

64
15

−149
70

12
7

−8
7

6
7

3
7

1
2

−6
7

0 5
7

−16
21

2
7

4
7

0 0 2
3

−1
2 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Appendix B. Example for the Performance of the Method
Presented in Sect. 5

Let p(x1, x2) = −504x4
1x

2
2 −84x4

1x2 +288x4
1 +6x3

1x
2
2 +30x3

1x2 −60x3
1 +36x2

1x
2
2 −

20x2
1x2 + 28x2

1 − 54x1x
2
2 + 21x1x2 − 24x1 + 24x2

2 − 24x2 + 48. Then

B(
∂p

∂x1
,u) =

⎡

⎢
⎢
⎢
⎢
⎣

−24 −27
2 −57

−4 −9
6

−83
3

−140
3

−207
6

−67
6

1004 −1743
2 −1241

⎤

⎥
⎥
⎥
⎥
⎦

and C ′
1 = B(p(0, x2), [0, 1]) =

[
48 36 48

]
;

B′
1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

48 36 48
−6 −27

8
−57
4

−4
3

−9
24

−83
12

−140
12

−207
24

−67
12

251 −1743
8

−1241
4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The Bernstein coefficients of p over u are obtained from

B(p,u) = H1H2H3H4B
′
1

=

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 1 1

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 1 1 0
0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
0 1 0 0 0
0 1 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

48 36 48

−6 −27
8

−57
4

−4
3

−9
24

−83
12

−140
12

−207
24

−67
12

251 −1743
8

−1241
4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

48 36 48

42 261
8

135
4

122
3

774
24

322
12

29 567
24

255
12

280 483
2 −289

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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