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Discrete-Time k-Positive Linear Systems
Rola Alseidi , Michael Margaliot , and Jürgen Garloff

Abstract—Positive systems play an important role in systems
and control theory and have found many applications in multiagent
systems, neural networks, systems biology, and more. Positive
systems map the nonnegative orthant to itself (and also the non-
positive orthant to itself). In other words, they map the set of vec-
tors with zero sign variations to itself. In this article, discrete-time
linear systems that map the set of vectors with up to k − 1 sign
variations to itself are introduced. For the special case k = 1 these
reduce to discrete-time positive linear systems. Properties of these
systems are analyzed using tools from the theory of sign-regular
matrices. In particular, it is shown that almost every solution of
such systems converges to the set of vectors with up to k − 1 sign
variations. It is also shown that these systems induce a positive
dynamics of k-dimensional parallelotopes.

Index Terms—Compound matrices, cones of rank k, exterior
products, sign-regular matrices, stability analysis.

I. INTRODUCTION

T HE discrete-time (DT) linear time-varying (LTV) system

x(i+ 1) = A(i)x(i), x(0) = x0 ∈ Rn (1)

is called positive if and only if (iff) it maps the nonnegative orthant

Rn
+ := {x ∈ Rn : xi ≥ 0 for all i ∈ {1, . . . , n}}

to itself. This holds iff A(i) ≥ 0 (i.e., all the entries of A(i) are
nonnegative) for all i ≥ 0. Note that a positive system also maps the
nonpositive orthant Rn

− := −Rn
+ to itself. In other words, it maps the

set of vectors with zero sign variations to itself. The system (1) is called
strongly positive if it maps Rn

+ \ {0} to int(Rn
+) (the interior of Rn

+).
Positive systems appear naturally when the state-variables represent

quantities that can only take nonnegative values, e.g., probabilities,
concentrations of molecules, densities of particles, etc. Positive LTVs
play an important role in linear systems and control theory (see, e.g., [9]
and [31]) and via differential analysis [13], [24], also in the analysis of
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nonlinear systems. To explain this, consider the nonlinear time-varying
system

x(i+ 1) = f(i, x(i)) (2)

and suppose that its trajectories evolve on a convex state-spaceΩ ⊆ Rn,
and that f is C1 with respect to x. For y ∈ Ω, let x(i, y) denote the
solution of (2) at time i for x(0) = y. Pick a, b ∈ Ω, and let

z(i) := x(i, a)− x(i, b)

that is, the difference at time i between the trajectories emanating froma
and from b at time zero. Then

z(i+ 1) = f(i, x(i, a))− f(i, x(i, b)) = Jab(i)z(i)

with Jab(i) :=

∫ 1

0

∂

∂x
f(i, rx(i, a) + (1− r)x(i, b)) dr. (3)

If Jab(i) ≥ 0 for all a, b ∈ Ω, and all i ≥ 0, then the variational
system (3) is a positive LTV, and this has important consequences for the
behavior of (2). Roughly speaking, almost every bounded trajectory of
a smooth strongly positive system converges to a periodic trajectory (a
cycle) [30]. This is quite different from the behavior in the continuous-
time (CT) case, where almost every bounded trajectory of the nonlinear
system converges to the set of equilibria [36].

The dynamics of a DT positive LTV maps the set of vectors with
zero sign variations to itself. A natural question is: what systems map
the set of vectors with up to k − 1 sign variations to itself? We call
such a system a DT k-positive system. Then, a 1-positive system is just
a positive system, but for k > 1 the system may be k-positive yet not
positive.

CT k-positive systems have been recently defined and analyzed
in [38]. In the CT and time-invariant case, i.e., ẋ(t) = Ax(t), the matrix
exponential of A should satisfy for all time a property called strict
sign-regularity of order k, for the definition see the next paragraph, and
this can be tested easily by checking sign conditions on the entries of A
itself [38]. In the DT case studied here, the matrix A itself must have
this property, and verifying this is nontrivial.

A matrix A ∈ Rn×m is called sign-regular of order k (denoted
by SRk) if all its minors of order k, i.e., determinants of its k × k
submatrices, are nonnegative or all are nonpositive. For example, if
all the entries of A are nonnegative then it is SR1. A matrix is called
strictly sign-regular of order k (denoted by SSRk) if it is SRk, and all
the minors of order k are nonzero. In other words, all minors of order
k are nonzero and have the same sign.1 To refer to the common sign of
the minors of order k, we introduce the signature εk ∈ {−1, 1}.

1We note that the terminology in this field is not uniform and some authors
refer to such matrices as sign-consistent of order k.
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For example, the matrix

A :=

⎡
⎢⎢⎢⎣
1 2 0 0

0 1 1 0

0 0 2 0.1

1 0 0 2

⎤
⎥⎥⎥⎦

is SR1 (but not SSR1 as some entries are zero). It has both positive and

negative 2-minors (e.g., det([
1 2
0 1

]) = 1 det([
1 2
1 0

)] = −2), so it is

not SR2. All its 3-minors are positive, so it is SSR3 with signature ε3 =
1, and det(A) > 0, so it is SSR4 with ε4 = 1.

After the first consideration of SRk matrices in [20], these matrices
have been the subject of only a few studies. In [1], the authors analyze
the spectral properties of nonsingular matrices that are SSRk for a
specific value of k. These results are extended to matrices that are SSRk

for several values of k, for example for all odd k.
A matrix A ∈ Rn×m is called [strictly] sign-regular ([S]SR) if it

is [S]SRk for all k = 1, . . . ,min{n,m} [28] and [29, p. 86]. The
most important examples of SR [SSR] matrices are the totally non-
negative (TN) [totally positive (TP)] matrices, that is, matrices with
all minors nonnegative [positive]. Such matrices have applications
in numerous fields including approximation theory, combinatorics,
probability theory, computer aided geometric design, differential and
integral equations, and more [8], [16], [20] and [29].

A very important property of SSR matrices is that multiplying a
vector x by such a matrix cannot increase the number of sign variations
in x [16]. To explain this variation diminishing property (VDP), we
introduce some notation. For y ∈ Rn \ {0}, let s−(y) denote the num-
ber of sign variations in y after deleting all its zero entries with s−(0)
defined as zero. For y ∈ Rn, let s+(y) denote the maximal possible
number of sign variations in y after each zero entry is replaced by
either +1 or −1. For example, for n = 4 and y = [ 1 −1 0 −π ]T

(where the superscript T denotes transposition), we have s−(y) = 1
and s+(y) = 3. Obviously,

0 ≤ s−(y) ≤ s+(y) ≤ n− 1 for all y ∈ Rn. (4)

The first important results on the VDP of matrices were obtained by
Fekete and Pólya [10] and Schoenberg [34]. Later on, Gantmacher
and Krein [16, Ch. V] elaborated rather completely the various forms
of VDPs and worked out the spectral properties of SR matrices. Two
important examples of such VDPs are: if A ∈ Rn×m (m ≤ n) is SR
and of rank m then

s−(Ax) ≤ s−(x) for all x ∈ Rm

whereas if A is SSR then

s+(Ax) ≤ s−(x) for all x ∈ Rm \ {0}.
Thus, if A is SSR then both s−(x(i)) and s+(x(i)) are integer-valued
functions that do not increase along solutions of x(i+ 1) = Ax(i).

For k ∈ {1, . . . , n}, let

P k
− := {z ∈ Rn : s−(z) ≤ k − 1}

P k
+ := {z ∈ Rn : s+(z) ≤ k − 1}. (5)

Then, positive systems map the set P 1
− to P 1

− , whereas strongly positive
systems map P 1

− \ {0} to P 1
+. This naturally leads to the question:

which linear systems map P k
− to P k

− and which map P k
− \ {0} to P k

+?
In this article, we define and analyze such systems, called DT k-positive
linear systems. We show that such systems have interesting dynamical
properties that generalize the properties of positive systems.

The remainder of this article is organized as follows. In
Section II, we review notations, definitions, and basic properties that
will be used later on. Section III defines DT k-positive linear systems
and analyzes their properties. Finally, this article concludes in Section
IV. In passing, we note that our results are part of a growing body of
research on the applications of sign-regularity (and, in particular, total
positivity) to dynamical systems [1], [4], [22], [25], [26], [35], and [38].

II. PRELIMINARIES

This section is divided into three subsections. Sections II-A and II-B
introduce definitions and notations needed later on. Section II-C reviews
the structure of the invariant sets P k

+ and P k
− .

A. Basic Notation and Definitions

For an integer n ≥ 1 and k ∈ {1, . . . , n}, let Qk,n denote the set of
all strictly increasing sequences of k integers chosen from {1, . . . , n}.
For example, Q2,3 = {12, 13, 23}.

For A ∈ Rn×m, α ∈ Qk,n, and β ∈ Qj,m, we denote the submatrix
of A lying in the rows indexed by α and columns indexed by β by
A[α, β]. Thus, A[α, β] ∈ Rk×j . If k = j, then, we set

A(α|β) := det(A[α, β])

that is, the minor corresponding to the rows indexed by α and columns
indexed by β. We often suppress the brackets associated with an index
sequence if we enumerate its entries explicitly.

B. Multiplicative Compound

Let A ∈ Rn×m. For any k ∈ {1, . . . ,min{n,m}}, the kth multi-
plicative compound of A is the

(
n
k

)× (m
k

)
matrix that includes all the

minors of order k of A organized in lexicographic order. For example,
if A ∈ R3×3 then

A(2) =

⎡
⎢⎣
A(12|12) A(12|13) A(12|23)
A(13|12) A(13|13) A(13|23)
A(23|12) A(23|13) A(23|23)

⎤
⎥⎦ .

Note that A(1) = A and that if m = n, then A(n) = det(A). Note also
that A is SSRk [SRk] if either A(k) > 0 or A(k) < 0 [either A(k) ≥ 0
or A(k) ≤ 0].

The Cauchy–Binet formula [8, Th. 1.1.1] provides an expression for
the minors of the product of two matrices. Pick A ∈ Rn×p and B ∈
Rp×m. Let C := AB. Pick k ∈ {1, . . . ,min{n, p,m}}, α ∈ Qk,n,
and β ∈ Qk,m. Then

C(α|β) =
∑

γ∈Qk,p

A(α|γ)B(γ|β). (6)

For n = p = m and k = n this reduces to the familiar for-
mula det(AB) = det(A) det(B). Note that (6) implies that

(AB)(k) = A(k)B(k) (7)

for all k ∈ {1, . . . ,min{n, p,m}}. This justifies the term multiplica-
tive compound.

C. Sets of Vectors With Sign Variations

Consider the sets defined in (5). It is well-known (see, e.g., [29,
Ch. 3]) that if vi ∈ Rn, i = 1, 2, . . . , is a set of vectors such that v :=
limi→∞ vi exists then

s−(v) ≤ lim inf
i→∞

s−(vi) ≤ lim sup
i→∞

s+(vi) ≤ s+(v). (8)
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Intuitively speaking, this is because we only need to consider what
happens when the limit vector v includes zero entries, and such entries
can only decrease s− and can only increase s+.

The next useful result is well-known, but for the sake of completeness
we include its proof in the Appendix.

Fact 1: The set P k
− is closed and

P k
+ = int(P k

− ). (9)

It is clear that

P 1
− = Rn

+ ∪ Rn
−, P 1

+ = int(Rn
+) ∪ int(Rn

−). (10)

Also, the sets are nested, as

P 1
− ⊂ P 2

− ⊂ · · · ⊂ Pn
− = Rn

P 1
+ ⊂ P 2

+ ⊂ · · · ⊂ Pn
+ = Rn. (11)

If x ∈ P k
− then rx ∈ P k

− for all r ∈ R, and if x ∈ P k
+ then sx ∈ P k

+ for
all s ∈ R \ {0}, so bothP k

− andP k
+ ∪ {0} are cones. Yet, in generalP k

−
andP k

+ are not convex sets. For example, forn = 2 and the vectorsx :=
[ 2 0 ]T , y := [ 0 −2 ]T , we have x, y ∈ P 1

− yet x
2
+ y

2
= [ 1 −1 ]T 
∈

P 1
− .
Recall that a set C ⊆ Rn is called a cone of rank k [23] if
(i) C is closed.

(ii) x ∈ C implies that rx ∈ C for all r ∈ R.
(iii) C contains a linear subspace of dimension k and no linear

subspace of higher dimension.
For example, R2

+ ∪ R2
− (and more generally, Rn

+ ∪ Rn
− [15]) is a

cone of rank 1. A cone C of rank k is called solid if its interior is
nonempty, and k-solid if there is a linear subspace W of dimension k
such that W \ {0} ⊆ int(C); k-solid cones are useful in the analysis
of dynamical systems [11], [12], [14], [33]. Roughly speaking, if a
trajectory of the system is confined to an invariant setC that is a k-solid
cone then the trajectory can be projected onto a k-dimensional subspace
contained in C. If this projection is one-to-one then the trajectory is
topologically conjugate to a trajectory of a k-dimensional dynamical
system.

It was shown in [38] (see also [23]) that for any k ∈ {1, . . . , n− 1},
the set P k

− is a k-solid cone, and that its complement

(P k
− )

c := clos(Rn \ P k
− )

is an (n− k)-solid cone. This implies, in particular, that there exists
a k-dimensional subspace W k such that W k ⊆ P k

− , and that there
is no (k + 1)-dimensional subspace contained in P k

− . For example,
let ei ∈ Rn denote the vector with all entries zero, except for entry i
that is one. Then, the k-dimensional subspace span{e1, . . . , ek} is
contained in P k

− .
We can now introduce and analyze a new class of DT linear systems.

III. DT k-POSITIVE LINEAR SYSTEMS

In this section, we define a k-positive DT linear system. We then
prove two properties of such systems. In Section III-A, we use the spec-
tral properties of nonsingular SSRk matrices to prove the k-exponential
separation property. In Section III-B, we analyze the dynamics of
exterior products of solutions.

Definition 1: Consider the DT LTV (1) with every matrix A(i)
nonsingular. The system is called k-positive if it maps P k

− to P k
− . It

is called strongly k-positive if it maps P k
− \ {0} to P k

+.
Note that (10) implies that a [strongly] positive system is a [strongly]

1-positive system. Note also that sinceP k
+ = int(P k

− ), bothP k
− andP k

+

are invariant sets of a strongly k-positive system.
Theorem 1: The system (1) is a [strongly]k-positive system iffA(i)

is [S]SRk for all i ≥ 0.

Fig. 1. s+(x(j)) as a function of j for the trajectory in Example 1.

Proof: [4, Th. 1] shows that a nonsingular matrix A ∈ Rn×n

is SSRk iff for any x ∈ Rn \ {0} with s−(x) ≤ k − 1, we
have s+(Ax) ≤ k − 1. A standard continuity argument [38] shows
that A is SRk iff for any x ∈ Rn \ {0} with s−(x) ≤ k − 1, we
have s−(Ax) ≤ k − 1. �

For the casek = 1 this is a generalization of [strongly] positive linear
systems. For example, a system is typically defined as strongly positive
if all the entries of A(k) are positive, yet it is strongly 1-positive if all
its entries are either all positive or all negative.

Example 1: Consider the system (1) with n = 4 and

A(i) =

⎡
⎢⎢⎢⎣

9 2 −2 1

3 10 1 −1

−4 1.5 12 4

1 −1 2 15

⎤
⎥⎥⎥⎦ (12)

for all i ≥ 0. Note thatA is not SSR1 (as it has both positive and negative
entries), nor SSR2 (as it has both positive and negative minors of order
two, e.g.,A(1, 2|1, 2) = 84,A(3, 4|1, 3) = −20). All the 16 minors of
order three are positive, anddet(A) 
= 0, soA is SSR3 and nonsingular.
Fig. 1 showss+(x(j)) as a function of j forx(0) = [ 1 1 −1 1 ]T . Note
that s−(x(0)) = 2. It may be seen that, as expected, s+(x(j)) ≤ 2 for
all j ≥ 0. �

From here on we focus on the time-invariant linear system

x(j + 1) = Ax(j), x(0) = x0 ∈ Rn (13)

whereA is nonsingular and SSRk for somek ∈ {1, . . . , n− 1}, leaving
the time-varying case and nonlinear systems to a sequel paper. To the
best of our knowledge, even for this LTI case our results are new.

A. k-Exponential Separation and Its Implications

Let C ⊆ Rn be a closed cone that is convex (i.e., x, y ∈ C implies
that rx+ sy ∈ C for all r, s ≥ 0), and pointed (i.e.,C ∩ (−C) = {0}).
Then, C induces a (partial) order defined by a ≤C b if b− a ∈ C.
For example, for C = Rn

+ we have a ≤C b if and only if bi ≥ ai for
all i ∈ {1, . . . , n}. Dynamical systems whose flow preserves such an
order are called monotone (see, e.g., the excellent monograph [36]).

Since P k
− and P k

+ are not convex sets, k-positive systems are not
monotone systems in the usual sense. However, the fact that P k

− is a
k-solid cone has strong implications for the dynamics of such systems.
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The first demonstration of this is a k-exponential separation property
of (13). This is closely related to the generalization of Perron’s Theorem
in [15] (see also [23]) but we give a direct proof based on the spectral
properties of a nonsingular SSRk matrix (see Theorem 2 below). We
now review these properties following the presentation in [1].

Fix a nonsingular matrix A ∈ Rn×n that is SSRk for some k ∈
{1, . . . , n− 1}. Denote the eigenvalues of A by λi, i = 1, . . . , n,
ordered such that

|λ1| ≥ |λ2| ≥ · · · ≥ |λn| > 0 (14)

and let

v1, v2, . . . , vn (15)

denote the corresponding eigenvectors, with complex conjugate eigen-
values appearing in consecutive pairs (we say, with a mild abuse of
notation, that z ∈ Cn is complex if it is not real). We use z̄ to denote
the complex conjugate of z. We may assume that every vi is not purely
imaginary. Indeed, otherwise we can replace vi by Im(vi) that is a real
eigenvector. Also, the fact that A is real means that if vi is complex
then its real and imaginary parts can be chosen as linearly independent.

Define a set of real vectors u1, u2, . . . , un ∈ Rn by going through
the vi’s as follows. If v1 is real then u1 := v1 and proceed to exam-
ine v2. If v1 is complex (and whence v2 = v̄1) then u1 := Re(v1),
u2 := Im(v1) and proceed to examine v3, and so on.

Suppose that for some i, j, the eigenvector vi is real, and vj is com-
plex. Then, it is not difficult to show that sinceA is real and nonsingular,
the real vectors vi,Re(vj), and Im(vj) are linearly independent.

Note that if vi, vi+1 ∈ Cn is a complex conjugate pair and c ∈ C \
{0} is complex then

cvi + c̄vi+1 = 2(Re(c)Re(vi)− Im(c) Im(vi)) ∈ Rn \ {0}
so by choosing an appropriate c ∈ C \ {0} we can get any nonzero real
linear combination of the real vectors Re(vi) and Im(vi).

For p ≤ q, we say that a set cp, . . . , cq ∈ C matches the
set vp, . . . , vq of consecutive eigenvectors (15) if the ci’s are not all
zero and for every i if the vector vi is real then ci is real, and if vi, vi+1

is a complex conjugate pair then ci+1 = c̄i. In particular, this implies
that

∑q
i=p civ

i ∈ Rn.
It was shown in [1] that if A ∈ Rn×n is nonsingular and SSRk with

signature εk, then the product εkλ1λ2 . . . λk is real and positive

|λk| > |λk+1| (16)

and if c1, . . . , ck ∈ C [ck+1, . . . , cn ∈ C] match the eigenvec-
tors v1, . . . , vk [vk+1, . . . , vn] of A, then

s+

(
k∑

i=1

civ
i

)
≤ k − 1 (17)

s−
(

n∑
i=k+1

civ
i

)
≥ k. (18)

Furthermore, let {u1, . . . , un} be the set of real vectors constructed
from {v1, . . . , vn} as described above. Then, u1, . . . , uk are linearly
independent. In particular, if v1, . . . , vk are real then they are linearly
independent.

Example 2: Let

A :=

⎡
⎢⎢⎢⎣
2 6 0 0

0 2 2 0

0 0 4 2

2 0 0 4

⎤
⎥⎥⎥⎦ . (19)

It is straightforward to verify that this matrix is nonsingular, and SSR3

with ε3 = 1. Its eigenvalues are2

λ1 = 3 + s1, λ2 = 3 + is2, λ3 = 3− is2, λ4 = 3− s1

where i2 = −1, s1 :=
√

1 + 4
√
3 ≈ 2.8157, and s2 :=√

−1 + 4
√
3 ≈ 2.4348. Note that λ1λ2λ3 is real and positive,

and that |λ3| > |λ4|. The matrix of corresponding eigenvectors is

V := [ v1 v2 v3 v4 ]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

s1−1
2

is2−1
2

−(is2+1)
2

−(s1+1)
2

s2
1
−1

12

−(1+s2
2
)

12

−(1+s2
2
)

12

s2
1
−1

12

2
s1−1

−2(1+is2)

1+s2
2

2(−1+is2)

1+s2
2

−2
s1+1

1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and thus

U := [u1 u2 u3 u4 ]

= [ v1 Re(v2) Im(v2) v4 ]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

s1−1
2

−1
2

s2
2

−(s1+1)
2

s2
1
−1

12

−(1+s2
2
)

12
0

s2
1
−1

12

2
s1−1

−2
1+s2

2

−2s2
1+s2

2

−2
s1+1

1 1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

Note that s−(ui) = s+(ui) = i− 1, i = 1, 2, 4, and

1 = s−(u3) < s+(u3) = 2.

�
We now state the main result in this section. Let || · || : Rn → R+

denote some vector norm.
Theorem 2: Suppose that A ∈ Rn×n is nonsingular and SSRk for

some k ∈ {1, . . . , n− 1}. Let u1, . . . , un be the real vectors con-
structed from the eigenvectors ofA as described above. Then, there exist
subspaces E := span{u1, . . . , uk} and Ec such that the following
properties hold:

(i) dim(E) = k and dim(Ec) = n− k;
(ii) both E and Ec are invariant under A;

(iii) E ⊆ int(P k
− ) ∪ {0}, and Ec ∩ P k

− = {0}.
(iv) There exist a > 0 and b ∈ (0, 1) such that for any x(0) ∈ E,

x̃(0) ∈ Ec, with ||x(0)|| = ||x̃(0)|| = 1, the corresponding so-
lutions of (13) satisfy

||x̃(j)|| ≤ abj ||x(j)||. (20)

(v) For any x(0) satisfying

x(0) = f + g, where f ∈ E \ {0} and g ∈ Ec (21)

there exists a q = q(x(0)) ≥ 0 such that the corresponding solu-
tion of (13) satisfies

s+(x(j)) ≤ k − 1 for all j ≥ q.

Remark 1: Condition (v) does not necessarily mean that x(0) is
an element of E, as it may also include some nonzero combination
of the vectors uk+1, . . . , un that are not in E. Assertion (v) states
that for almost any initial condition, the corresponding solution of the

2All numerical values in this article are subject to four-digits accuracy.
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dynamical system converges toP k
+ in finite time. Thus,P k

+ is an almost
globally attractive invariant set of the dynamics. Invariant sets play an
important role in systems and control theory (see, e.g., [6]).

Proof of Theorem 2: We consider without loss of generality the
generic case, where u1, . . . , un are linearly independent. Then, Ec =
span{uk+1, . . . , un}. The proofs of the properties of Ec are then very
similar to the proofs for E, and thus we present here only the proofs
for E.

We begin by noting that the eigenvalues of A are ordered as

|λ1| ≥ · · · ≥ |λk| > |λk+1| ≥ · · · ≥ |λn| > 0. (22)

Assertion (i) follows immediately from the fact that u1, . . . , un are
linearly independent.

Pick z ∈ E \ {0}. Since
∏k

�=1 λ� is real, either λk−1, λk are
both real, or they are a complex conjugate pair. Combining
this with the definition of E implies that z =

∑k
i=1 civ

i, for
some c1, . . . , ck that match v1, . . . , vk. Hence, Az =

∑k
i=1 ciλiv

i.
Clearly, {c1λ1, . . . , ckλk} also match {v1, . . . , vk}, so E is invariant
under A.

It follows from (17) and the construction of theui’s thats+(z) ≤ k −
1 for any z ∈ E \ {0}, that is, E \ {0} ⊆ P k

+. Since P k
+ = int(P k

− ),
we conclude that E ⊆ int(P k

− ) ∪ {0}.
To prove (iv), pick x(0) ∈ E \ {0} and x̃(0) ∈ Ec \

{0}. Then, x(0) =
∑k

i=1 civ
i and x̃(0) =

∑n
i=k+1 c̃iv

i,
where c1, . . . , ck ∈ C [c̃k+1, . . . , c̃n ∈ C] match v1, . . . , vk

[vk+1, . . . , vn]. Using (22), a straightforward argument shows
that there exists m > 0 such that

||x(j)|| = ||Ajx(0)||
≥ m|λk|j ||x(0)||.

Similarly, there exists M > 0 such that ||x̃(j)|| ≤ M |λk+1|j ||x̃(0)||.
Thus

||x̃(j)||
||x(j)|| ≤

M

m

∣∣∣∣λk+1

λk

∣∣∣∣
j ||x̃(0)||
||x(0)||

and combining this with (16) proves (20).
To prove (v), pick x(0) such that (21) is satisfied. Then, x(0) =∑n
i=1 civ

i, where c1, . . . , cn ∈ C matchv1, . . . , vn, and
∑k

i=1 civ
i 
=

0. Thus,

x(j)

||∑k
i=1 ciλ

j
iv

i|| =
∑k

i=1 ciλ
j
iv

i

||∑k
i=1 ciλ

j
iv

i|| +
∑n

i=k+1 ciλ
j
iv

i

||∑k
i=1 ciλ

j
iv

i|| .

The first term on the right-hand side of this equation is a unit vector inE,
and the second term goes to zero as j → ∞. Thus, there exists r ≥ 0
such that x(r) ∈ P k

− . Then, x(r + 1) ∈ P k
+, and the invariance of P k

+

implies that x(j) ∈ P k
+ for all j ≥ r + 1. �

The next example demonstrates a simple application of
Theorem 2.

Example 3: Consider the matrix

A =

⎡
⎢⎣
a11 a12 0

0 a22 a23

a31 0 a33

⎤
⎥⎦ .

We assume that det(A) = a12a23a31 + a11a22a33 
= 0, so A is non-
singular. It is straightforward to verify that A is SSR2 iff either a31

is negative and all the other aij’s are positive or if a31 is positive
and all the other aij’s are negative. For concreteness, we assume
the first case. Note that since a31a11 < 0 the matrix is not SR1.
The dynamics x(k + 1) = Ax(k) represents a cyclic linear system,
where the dynamics of each state-variable xi, i = 1, 2, depends on

the state of xi, xi+1 in a cooperative manner, and there is a negative
feedback fromx1(k) tox3(k + 1). CT cyclic systems have found many
applications in various fields (see, e.g. [17]). Theorem 2 implies that for
almost every initial condition x(0) the solution x(k) converges to P 2

+,
that is

s+(x(k)) ≤ 1 for all k sufficiently large. (23)

Note that if we multiply A by any c ∈ R \ {0} then the required sign
pattern ofA still holds, and thus the same conclusion holds. This implies
that (23) is independent of stability. In other words, (23) cannot be used
to determine if solutions go to the origin, to a limit cycle, or to infinity,
yet it implies that the solutions must go there “through” P 2

+. �

B. Dynamics of Exterior Products

The exterior product (also called wedge product) of vectors is an
algebraic construction that can be used to study geometric properties:
areas, volumes, and their higher-dimensional analogues [18]. Pick Z ∈
Rn×k, withk ≤ n. Denote the columns ofZ byz1, . . . , zk ∈ Rn. Then,

its kth multiplicative compound Z(k) ∈ R(nk)×(nk) is the exterior prod-
uct z1 ∧ · · · ∧ zk, represented as a column vector [27]. For example,
for z1 = [ r1 r2 r3 ]

T and z2 = [w1 w2 w3 ]
T , we have

Z(2) =

⎡
⎣ r1 w1

r2 w2

r3 w3

⎤
⎦

(2)

= [ r1w2 − r2w1 r1w3 − r3w1 r2w3 − r3w2 ]
T .

Consider the dynamics (13), where A ∈ Rn×n is SSRk, and pick k
initial conditions w1, . . . , wk ∈ Rn. Let

X(j) :=
[
x(j, w1) . . . x(j, wk)

] ∈ Rn×k. (24)

Then, X(j + 1) = AX(j). Taking the kth multiplicative compound
on both sides of this equation and using (7) yields

η(j + 1) = A(k)η(j) (25)

where

η(j) := x(j, w1) ∧ · · · ∧ x(j, wk). (26)

The magnitude of this wedge product is the volume of thek-dimensional
parallelotope whose edges are the given vectors.

Example 4: Suppose thatn = 3,A :=

⎡
⎣ λ1 0 0
0 λ2 0
0 0 λ3

⎤
⎦, k = 2,w1 =

ep, and w2 = eq for some p, q ∈ {1, 2, 3}. Then

η(j) = x(j, ep) ∧ x(j, eq)

= (λj
pe

p) ∧ (λj
qe

q)

= λj
pλ

j
q(e

p ∧ eq)

= (λpλq)
jη(0).

This implies that under the dynamics (13) the unsigned area of the
parallelogram having ep and eq as two of its sides scales as (λpλq)

j .

On the other hand, A(2) =

⎡
⎢⎣

λ1λ2 0 0

0 λ1λ3 0

0 0 λ2λ3

⎤
⎥⎦.

IfA is SSRk then either every entry ofB := A(k) is positive or every
entry is negative. We assume that B > 0. By the Perron theorem, the
spectral radius ofB, denotedρ(B), is a positive eigenvalue and there ex-
ist positive vectors vB , wB , such that BvB = ρ(B)vB and BTwB =
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ρ(B)wB . By normalization, we may assume that (vB)TwB = 1. Then,
furthermore

lim
j→∞

(
B

ρ(B)

)j

= vB(wB)T (27)

(see, e.g., [19, Ch. 8]). This yields the following result.
Theorem 3: Suppose that A is SSRk and that B := A(k) > 0.

Pick k initial conditions w1, . . . , wk ∈ Rn, and define X(j) and η(j)
as in (24) and (26). Then

lim
j→∞

η(j)

(ρ(B))j
= (wB)T η(0)vB . (28)

Proof: By (25), η(j) = Bjη(0), i.e., η(j)

(ρ(B))j
= ( B

ρ(B)
)jη(0). Tak-

ing j → ∞ and using (27) completes the proof. �
Remark 2: Suppose that the spectral radius ρ(A) of A satisfies

ρ(A) < 1. Then, limj→∞ Ajx = 0 for all x ∈ Rn and thus

η(j) = (Ajw1) ∧ · · · ∧ (Ajwk)

satisfies limj→∞ η(j) = 0. Since every eigenvalue of A(k) is the prod-
uct of k eigenvalues of A, ρ(B) < 1 so (28) also shows that η(j) goes
to zero as j → ∞.

Example 5: Consider the case n = 3, k = 2,

A :=

⎡
⎢⎣
0.79 0.2 0.01

0.1 0.8 0.1

0.01 0.1 0.89

⎤
⎥⎦ ,

w1 = e1, and w2 = e2. In other words, we consider the evolution of
the unsigned area of the parallelogram with e1 and e2 as two of its sides.
A calculation yields

B := A(2) =

⎡
⎢⎣
0.612 0.078 0.012

0.077 0.703 0.177

0.002 0.088 0.702

⎤
⎥⎦

(so A is SSR2), ρ(B) = 0.8430

vB = [ 0.2991 0.8075 0.5084 ]T

and

wB = [ 0.2203 0.6394 0.8217 ]T

(note that (wB)T vB = 1). We compute η(15) in two different ways.
First

η(15) = (A15e1) ∧ (A15e2)

= [ 0.2397 0.2190 0.1858 ]T

∧ [ 0.4228 0.4103 0.3859 ]T

= 0.0057e1 + 0.0139e2 + 0.0083e3. (29)

Second, it follows from (28) that

η(15) ≈ (ρ(B))15(wB)T η(0)vB

= (ρ(B))15wB
1 vB

=
[
0.0051 0.0137 0.0086

]T
and this is indeed an approximation of (29). �

Recall that if A ∈ Rn×n is Schur and A ≥ 0, then (13) admits
a diagonal Lyapunov function, that is, there exists a diagonal and
positive-definite matrix P ∈ Rn×n such that ATPA− P is negative
definite [5]. Diagonal Lyapunov functions play an important role in

stability analysis of nonlinear systems and in passivity theory (see,
e.g., [21] and [37]). Now assume that A is SSRk, with εk = 1, and
Schur. Then, there exists a diagonal and positive-definite matrix D ∈
Rr×r , with r :=

(
n
k

)
, such that (A(k))TDA(k) −D is negative definite.

In other words, the dynamical system (25) admits a diagonal Lyapunov
function. This suggests that in this case many of the powerful ideas
based on using diagonal Lyapunov functions can be extended to study
the evolution of k-dimensional exterior products.

IV. DISCUSSION

Positive systems and their nonlinear counterpart of monotone sys-
tems form a class of dynamical systems of fundamental importance
in systems biology, neuroscience, and biochemical networks, and has
recently also found important applications in control engineering for
large-scale systems [32].

We introduced a new class of DT linear systems that map the set of
vectors with up to k − 1 sign variations to itself. For k = 1 this reduces
to the important notion of DT positive linear systems.

An interesting research direction is to study DT nonlinear systems
whose variational equation is a k-positive linear system. Since the
variational equation (3) includes the integral of a matrix, this raises
the following question: when is the integral of a matrix SSRk?

Theorem 3 describes the convergence to a ray for the exterior product.
We believe that this can generalized to the DT time-varying linear
system (1), with the matrices A(i) taken from a compact set, using
the Birkhof–Hopf theory [7].

Another interesting research direction may be the extension of k-
positive systems to DT control systems as was done for CT monotone
systems in [3]. Finally, our results highlight the importance of an
efficient algorithm for determining if a given matrix is SSRk for some k.
This issue is currently under study [2].

APPENDIX

PROOF OF FACT 1

Let vi, i = 1, 2, . . . , be a set of vectors such that vi ∈ P k
− for all i

and v := limi→∞ vi exists, Applying (8) yields

s−(v) ≤ lim inf
i→∞

s−(vi) ≤ k − 1

so v ∈ P k
− . We conclude that P k

− is closed.
To prove (9) pick z ∈ P k

+. Then, s−(z) ≤ s+(z) ≤ k − 1, so z ∈
P k
− . This shows that P k

+ ⊆ P k
− . Thus, it is enough to show that the

boundary of P k
− , denoted ∂P k

− , satisfies

∂P k
− = P k

− \ P k
+. (30)

Pick x ∈ ∂P k
− . Then, s−(x) ≤ k − 1 and for any ε > 0 there exists y ∈

Rn such that ||x− y|| ≤ ε and s−(y) > k − 1. This implies that we
can find a set of vectors xi, i = 1, 2, . . ., such that limi→∞ xi = x
and s−(xi) > k − 1 for all i. Applying (8) yields

k − 1 < lim inf
i→∞

s−(xi) ≤ s+(x).

We conclude that x ∈ P k
− and x 
∈ P k

+, so

∂P k
− ⊆ P k

− \ P k
+.

Now pick x ∈ P k
− \ P k

+. Thus, s−(x) ≤ k − 1 and s+(x) > k − 1.
This implies that there exists a nonempty set of indexes E such that for
every i ∈ E we have xi = 0 and there exists ri ∈ {−1, 1} such that
the vector y defined by

yk :=

{
rk, k ∈ E

xk, k 
∈ E
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satisfies s−(y) > k − 1. Seeking a contradiction, assume that x ∈
int(P k

− ). Then, for any sufficiently large c > 0 the vector z defined
by

zk :=

{
rk/c, k ∈ E

xk, k 
∈ E

satisfies z ∈ P k
− . But by s−(z) = s−(y) > k − 1 we obtain a contra-

diction which shows that x ∈ ∂P k
− . Since

P k
− \ P k

+ ⊆ ∂P k
−

the proof of Fact 1 is completed. �
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[30] P. Poláčik and I. Tereščák, “Convergence to cycles as a typical asymptotic
behavior in smooth strongly monotone discrete-time dynamical systems,”
Arch. Rational Mechanics Anal., vol. 116, no. 4, pp. 339–360, 1992.

[31] A. Rantzer and M. E. Valcher, “A tutorial on positive systems and large
scale control,” in Proc. 57th IEEE Conf. Decis. Control, 2018, pp. 3686–
3697.

[32] A. Rantzer, “Scalable control of positive systems,” Eur. J. Control, vol. 24,
pp. 72–80, 2015.

[33] L. A. Sanchez, “Cones of rank 2 and the Poincaré-Bendixson property
for a new class of monotone systems,” J. Differ. Equ., vol. 246, no. 5,
pp. 1978–1990, 2009.

[34] I. Schoenberg, “Über variationsvermindernde lineare Transformation,”
Math. Zeitschrift, vol. 32, no. 1, pp. 321–328, 1930.

[35] B. Schwarz, “Totally positive differential systems,” Pacific J. Math.,
vol. 32, no. 1, pp. 203–229, 1970.

[36] H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory
of Competitive and Cooperative Systems, (ser. Mathematical Surveys and
Monographs. Providence), vol. 41, Providence, RI, USA: Amer. Math.
Soc., 1995.

[37] A. Sootla, Y. Zheng, and A. Papachristodoulou, “On the existence of block-
diagonal solutions to Lyapunov andH∞ Riccati inequalities,” IEEE Trans.
Autom. Control, to be published. [Online]. Available: https://ieeexplore.
ieee.org/document/8876610

[38] E. Weiss and M. Margaliot, “A generalization of linear positive systems
with applications to nonlinear systems: Invariant sets and the Poincaré-
Bendixson property,” 2019, arXiv:1902.01630.

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on December 27,2020 at 09:52:16 UTC from IEEE Xplore.  Restrictions apply. 

http://arxiv.org/abs/1807.02779
https://arxiv.org/abs/1905.06787
https://www.biorxiv.org/content/10.1101/868000v1
https://ieeexplore.ieee.org/document/8876610


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


