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Abstract: Let A = [aij] be a real symmetric matrix. If f : (0,∞) −→ [0,∞) is a Bernstein function, a su�cient
condition for the matrix [f (aij)] to have only one positive eigenvalue is presented. By using this result, new
results for a symmetric matrix with exactly one positive eigenvalue, e.g., properties of its Hadamard powers,
are derived.
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1 Introduction
A function f : (0,∞) −→ R is said to be completely monotonic, if f has derivatives of all orders and satis�es
the inequality

(−1)n f (n)(x) ≥ 0, x > 0 and n = 0, 1, 2, . . . .

A di�erentiable function f : (0,∞) −→ [0,∞) is called a Bernstein function, if f ′ is completely monotonic.
For example, the elementary function f (x) = xα, 0 < α ≤ 1, is a Bernstein function.
The Bernstein functions on (0,∞) can be characterized as follows:
A function f : (0,∞) −→ [0,∞) is a Bernstein function if and only if it admits the representation

f (x) = α + βx +
∞∫
0

(1 − e−tx) dµ(t), (1)

where α, β ≥ 0 and µ is a measure on (0,∞) satisfying
∫∞
0 min{1, t} dµ(t) < ∞, see, e.g., [12, Theorem 3.2].

The notion of the Bernstein function goes back to the treatment of potential theory in the work of
the school of J. Deny, which was the source of inspiration for [15]. In [5], a Bernstein function is called a
completely monotone function, which was characterized by Bernstein in 1929 as a Laplace transform of
positive measure on [0,∞), see [4]. The literature devoted to this class of functions is impressive since
they have remarkable applications in various branches, for instance, they play a role in potential theory,
probability theory, physics, numerical and asymptotic analysis, and combinatorics. A detailed collection of
the most important properties as well as lists of Bernstein functions can be found in the survey paper [3] and
the monograph [12].

Let A = [aij] and B = [bij] be real n×nmatrices. TheirHadamard product (also called Schur product) A◦B
is de�ned as the entrywise product of A and B, A◦B = [aijbij]. TheHadamard unitmatrix is thematrix E all of
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whose entries are 1 (the size of E being understood). A matrix isHadamard invertible if all its entries are non-
zero, and A◦−1 = [1/aij] is then called theHadamard inverse of A. If all entries of A are non-negative, then the
r-th Hadamard power of A is A◦r = [arij], r > 0. We de�ne the Hadamard exponential of A by e◦A = [eaij ] and,
if A has all entries positive, the Hadamard logarithm of A by log◦(A) = [log(aij)]. Suppose that A is positive
semide�nite and that aij ≥ 0 for all i and j. We say that A is in�nitely divisible if the matrix A◦r is positive
semide�nite for every non-negative r. If A is a symmetric matrix such that aij > 0 for all i, j and A has exactly
one positive eigenvalue, then we say that A is in the classA.

In this paper, we present a result for the Hadamard power of matrices in classA. From this result follows
an alternative proof of a result due to Bapat [1, p.471, proof of Lemma 6], who showed that if A is in class A,
then its Hadamard inverse is in�nitely divisible.

Let e ∈ Rn be the vector of all ones and ei ∈ Rn be the vector which has in its i-th component a one,
while all its other components are zero. A real symmetric n × n matrix A is said to be conditionally positive
(negative) semide�nite if xTAx ≥ 0 (≤ 0) for all x ∈ Rn such that xTe = 0; A is conditionally positive (negative)
de�nite if xTAx > 0 (< 0) for all x ∈ Rn such that xTe = 0.

It is well-known that a non-zero conditionally negative semide�nite matrix with all entries non-negative
has exactly one positive eigenvalue, see [2, Corollary 4.1.5]. By using a result on Bernstein functions, we
present new results for conditionally negative semide�nite matrices with positive entries.
In [2, Theorem 4.4.6], Bapat and Raghavan proved a su�cient and necessary condition based on the signed
principal minors for a symmetric matrix with positive entries to have exactly one positive eigenvalue. We
prove a similar su�cient condition. A consequence of this result will be used to show that if A is a symmetric
matrix which has all o�-diagonal entries positive, all diagonal entries zero, and has just one positive eigen-
value, then A◦α, 0 < α < 1, has one positive eigenvalue. This result provides a generalization of a theorem
given by Reams [11]. We will use the Perron-Frobenius Theorem, which states that if an irreducible matrix A
has all its entries nonnegative then it has a positive eigenvalue µ. Furthermore, the eigenvector that corre-
sponds to µ, called the Perron eigenvector of A, can be chosen as a vector with positive components., see,
e.g., [8, Theorem 8.4.4].

2 Background and key lemmata
We collect here some key facts needed for our main results. The following lemmata are well-known.

Lemma 1. (Schur Product Theorem): Suppose A and B are positive semide�nitematrices of size n. Then A◦B
is also positive semide�nite. If A and B are positive de�nite, then A ◦ B is positive de�nite, too.

Lemma 2. ([7, p.144]; [9, Corollary 2.1]):
The symmetric matrix A = [aij] ∈ Rn×n is conditionally positive semide�nite if and only if its Hadamard
exponential e◦tA is positive semide�nite for all t ≥ 0. Moreover, e◦tA is positive de�nite for all t > 0 if and only
if 2aij < aii + ajj , for all i ≠ j.

Lemma 3. ([2, Corollary 4.4.5, Theorem 4.4.6]; [11, Corollary 2.8, proof of Theorem 2.7]):
Let A = [aij] ∈ A. Then the following properties hold:

(i) The Hadamard inverse of A is positive semide�nite. Moreover, it is positive de�nite if A is invertible.
(ii) If A is conditionally negative de�nite, then the Hadamard inverse of A is positive de�nite if and only if

2aij > aii + ajj , for all i ≠ j.
(iii) The matrix A ◦ (vvT)◦−1 is conditionally negative semide�nite, where v is the Perron eigenvector of A.

Lemma 4. ([2, Lemma 4.3.5]):
LetA bea symmetric conditionallynegative semide�nitematrix that is not negative semide�nite, and suppose
that xTAx ≠ 0 for every non-zero x ∈ Rn such that xTe = 0, then A is invertible.
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Lemma 5. (Sylvester’s Law of Inertia, e.g., [8, Theorem 4.5.8]):
Let A and B be Hermitian matrices, then there exists a non-singular matrix S such that A = SBS* if and only
if A and B have the same inertia.

3 Main results
Theorem 6. Let A = [aij] ∈ Rn×n be a symmetric conditionally negative semide�nite matrix with all entries
positive and let f : (0,∞) −→ [0,∞) be a Bernstein function. Then [f (aij)] ∈ A. Moreover, it is invertible if A
is invertible.

Proof. Let f be a Bernstein function, thus by (1),

f (aij) = α + βaij +
∞∫
0

(1 − e−taij )dµ(t),

where α, β ≥ 0 and [α + βaij] is conditionally negative semide�nite.
Since A is conditionally negative semide�nite, −tA is conditionally positive semide�nite and so by Lemma
2, [e◦−tA] is positive semide�nite for all t > 0. Therefore, [E − e◦−tA] is conditionally negative semide�nite.
Whence [f (aij)] is conditionally negative semide�nite, and hence it has one positive eigenvalue.
To prove the su�cient condition on the invertibility of [f (aij)], suppose A is in addition invertible. Then,
Lemma 3(i), (ii) implies that 2aij > aii + ajj , for all i ≠ j and so −A is invertible, conditionally positive
semide�nite and has the property −2aij < −aii − ajj , for all i ≠ j. By Lemma 2, [e◦−tA] is positive de�nite
and hence [−e◦−tA] is conditionally negative de�nite for all t > 0. This implies that [E − e◦−tA] is conditionally
negative de�nite. Therefore, [f (aij)] is conditionally negative de�nite and since it has a positive eigenvalue,
it is not negative semide�nite. By using Lemma 4, we conclude that [f (aij)] is invertible.

Theorem 7. Let A ∈ A. Then A◦α belongs also toA, where 0 < α ≤ 1 and is invertible if A is invertible.

Proof. Let A ∈ A and let v be the Perron eigenvector of A. By Lemma 3(iii), B := A ◦ (vvT)◦−1 is conditionally
negative semide�nite and hence it has exactly one positive eigenvalue. For 0 < α ≤ 1, the function f (x) = xα

is a Bernstein function. Thus, by Theorem 6, B◦α has exactly one positive eigenvalue and is invertible if B is
invertible, where 0 < α ≤ 1. LetW = diag(vα1 , . . . , vαn), then A◦α = WB◦αW. By Lemma 5, A◦α has one positive
eigenvalue and is invertible if B◦α is invertible. Finally, by Lemma 5, B is invertible if A is invertible.

In Corollary 8, we give an alternative proof of a result due to Bapat [1, p.417, proof of Lemma 6] and provide
some results for the conditionally negative semide�nite matrices.

Corollary 8. Let A ∈ A, then the Hadamard inverse of A is in�nitely divisible.

Proof. Let A ∈ A, then the proof of the positive de�niteness of A◦−α for all 0 < α ≤ 1 follows directly from
Theorem 7 and Lemma 3(i). The extension to all α > 1 is provided by the application of Lemma 1.

The application of Theorem 6 and Corollary 8 to Bernstein functions can be used to obtain the in�nite divisi-
bility of some matrices. The following theorem presents three examples.

Theorem 9. Let A be a symmetric conditionally negative semide�nite matrix with positive entries, then the
following matrices are in�nitely divisible:

(i) E + rA◦−1, r > 0,
(ii) (log◦(E + A))◦−1,
(iii) (A + αE)◦−1 ◦ (A + βE), 0 ≤ α < β.
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Proof. Assume that x ∈ (0,∞). (i): The function f (x) = x
r+x , where r > 0, is a Bernstein function. Thus, if A is

conditionally negative semide�nite with positive entries, Theorem 6 and Corollary 8 imply (i).
(ii): The proof follows by using the same arguments as in the proof of (i) for the Bernstein function g(x) =
log(1 + x).
(iii): By [15, p.9], the following representation holds

log x + βx + α =
β∫
α

(x + ξ )−1dξ , (2)

where 0 ≤ α < β and ξ is a measure on (0,∞). Now, if a symmetric matrix A is conditionally negative semidef-
inite with positive entries, then (2) implies that the matrix [log aij+βaij+α ] is positive semide�nite. We complete the
proof by using Lemma 2.

Theorem 10. Let A ∈ A, then for all r > 0, rA + vvT ∈ A, where v is the Perron eigenvector of A.

Proof. Let A = [aij] ∈ A, then Lemma 3(ii) ensures that the matrix [r aijvivj + 1] is in class A. We complete the
proof in the same way as in the proof of Theorem 7.

Thenext two lemmatawill be used in theproof of Theorem13.Note that, if a symmetricmatrixA = [aij] ∈ Rn×n

is conditionally negative de�nite, then by (ei − ej)Te = 0, we have 0 > (ei − ej)TA(ei − ej) = aii + ajj − 2aij.

It was shown in [2, Theorem 4.4.6] and follows from [10, Theorem 3.1] by Lemma 5, that a symmetric
matrix A ∈ Rn×n with positive entries belongs to the class A if and only if, for any k × k principal submatrix
B of A, (−1)k−1detB ≥ 0, for all k = 1, . . . , n. The next lemma provides a weaker condition for a symmetric
matrix to have exactly one positive eigenvalue by removing the assumption of the positivity of the entries of
A.

Lemma 11. ([14, Lemma 3.8]):
Let A ∈ Rn×n be a symmetricmatrix and let for each k×k leading principal submatrix B of A, (−1)k−1detB > 0,
for k = 1, . . . , n, then A has exactly one positive eigenvalue.

The following lemma was proven in [9] for Euclidean distance matrices, where in Remark 3.2 therein it is
mentioned that the proof canbe extended to arbitrary symmetric conditionally negative semide�nitematrices
with nonnegative entries satisfying the inequality condition in Lemma 2, cf. [6, pp.163-164].

Lemma 12. ([9]):
If a symmetric matrix A = [aij] ∈ Rn×n is conditionally negative semide�nite with nonnegative entries and

2aij > aii + ajj , for all i ≠ j,

then
(−1)n−1det(A◦α) > 0,

for all 0 < α < 1.

A famous theorem of Schoenberg in distance geometry says that a symmetric matrix D = [dij] with zero diag-
onal entries and positive o�-diagonal entries, is conditionally negative semide�nite if and only if there exist
distinct vectors u1, . . . , un ∈ Rs for some s such that ‖ui−uj‖2 = dij for all i, j, i.e., D is an Euclidean distance
matrix, see [2, Theorem 4.1.7]. In [9, proof of Theorem 2.3], Micchelli showed that if a conditionally negative
semide�nite matrix A ∈ Rn×n is a distance matrix, then A◦α, 0 < α < 1, has one positive eigenvalue and is
invertible. In the next theorem, we give a weaker condition on A such that A◦α has one positive eigenvalue.

Theorem 13. Let A ∈ Rn×n be a symmetric conditionally negative semide�nite matrix with nonnegative
entries and

2aij > aii + ajj , for all i ≠ j. (3)
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Then A◦α , 0 < α < 1, has one positive eigenvalue and is invertible.

Proof. From the hypothesis, we can conclude that −A is conditionally positive semide�nite and −2aij < −aii−
ajj , for all i ≠ j. Let B be any leading principal submatrix of A. By Lemma 2, e◦−A is positive de�nite. Then
e◦−B is also positive de�nite. By Lemma 2 we conclude that B is conditionally negative de�nite and has the
property 2bij > bii + bjj , for all i ≠ j. Now, Lemma 12 and Lemma 11 imply that the matrix A◦α, has one
positive eigenvalue for all 0 < α < 1 and is invertible.

In [11, Theorem 2.9], Reams showed that if a symmetric matrix A, with positive o�-diagonal entries and all
diagonal entries are zero, has one positive eigenvalue, then the Hadamard square root of A has also one
positive eigenvalue and is invertible. The next theorem gives a generalization of his result which was already
proven by Schoenberg in [13] for the special case of distance matrices (of distinct points).

Theorem 14. Let A ∈ Rn×n be symmetric with positive o�-diagonal entries, zero diagonal entries, and just
one positive eigenvalue. Then A◦α, 0 < α < 1, has one positive eigenvalue and is invertible.

Proof. Let λ1 ≤ · · · ≤ λn−1 ≤ 0 < λn be the eigenvalues of A with Av = λnv and Auj = λjuj, where 1 ≤ j ≤ n − 1
and v = (v1, . . . , vn)T ∈ Rn be the Perron eigenvector of A.
Write

A = λnvvT + λn−1un−1uTn−1 + · · · + λ1u1uT1 .

Then,
xTWAWx = xT(λneeT + λn−1(Wun−1)(Wun−1)T + · · · + λ1(Wu1)(Wu1)T)x,

whereW = diag( 1v1 , . . . ,
1
vn ). So, if x

Te = 0, then

xTWAWx ≤ 0,

and hence the matrix WAW is conditionally negative semide�nite. By using Theorem 13, (WAW)◦α =
W◦αA◦αW◦α has one positive eigenvalue. If A◦α would not be invertible then W◦αA◦αW◦α would not be in-
vertible by Lemma 5 and we obtain by (3) a contradiction to the positivity of the o�-diagonal entries of A.

4 Conclusion
In our paper, we have extended some known results related to the class of symmetric matrices having exactly
one positive eigenvalue, e.g., on their Hadamard powers and inverses.

Note added in proof: When our paper was already in proof we learnt that a statement similar to Theorem 6
for operator monotone functions was given in I. Garg, J. S. Aujla, Inertia of non-integer Hadamard powers of
a non-negative matrix. Linear Multilinear Algebra, 68(2):410-416, 2020.
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