Learning View Graphs for Robot Navigation

Matthias O. Franz

Philipp Georg

Bernhard Schoélkopf
Hanspeter A. Mallot Heinrich H. Bulthoff

Max—Planck-Institut fir biologische Kybernetik
Spemannstrafie 38
72076 Tubingen
Germany

franz/bs/pg/ham/hhb@mpik-tueb.mpg.de

Abstract

We present a purely vision-based scheme for
learning a parsimonious representation of an
open environment. Using simple exploration be-
haviours, our system constructs a graph of ap-
propriately chosen views. To navigate between
views connected in the graph, we employ a hom-
ing strategy inspired by findings of insect ethol-
ogy. Simulations and robot experiments demon-
strate the feasibility of the proposed approach.

Introduction!

To survive in unpredictable and sometimes hostile en-
vironments animals have developed powerful strategies
to find back to their shelter or to a previously vis-
ited food source. Successful navigation can already be
achieved using simple mechanisms such as association
of landmarks with movements (Wehner et al. 1996) or
tracking of environmental features (Collett 1996). To
understand more complex forms of spatial behaviour
like finding shortcuts, however, we have to go beyond
reactive control strategies, towards systems with inter-
nal states. In as far as they support navigation be-
haviours, these states can be thought of as represent-
ing certain task-relevant spatial aspects of an animal’s
environment.

The spatial representations that have been proposed
in the literature — sometimes referred to as cognitive
maps — differ in the type of sensory input being uti-
lized and in their geometric power. Regarding the lat-
ter aspect, a main distinction has been the one be-

! Copyright ©1997 by the Association for Computing
Machinery, Inc. Permission to make digital or hard copies
of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made
or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers,
or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Publications Dept,
ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org.

tween metric maps and topological maps. Tradition-
ally, robotics approaches have focused on constructing
accurate global metric representations, based on a va-
riety of mostly non-visual sensors. Besides the high
computational costs the problem with such geometric

models is that they tend to contain a large amount
of irrelevant information while the visual or non-visual
cues that lead to their construction are not specifi-
cally represented. The goal of any representation, how-
ever, is to support navigation tasks, thus researchers
have started to explore possibilities of solving these
tasks with more parsimonious representations and less
complex algorithms (e.g. Kuipers and Byun, 1991,
Mataric, 1991, Bachelder and Waxman, 1995, or, for
biological behaviours, Braitenberg, 1984). For in-
stance, Scholkopf and Mallot (1995) have shown that
learning a graph of views and movement decisions is
sufficient to generate various forms of navigation be-
haviour found in rodents, such as finding previously
visited locations, or updating spatial representations
with egomotion information to maintain knowledge
about one’s position even without external informa-
tion. This scheme has subsequently been implemented
on a mobile robot (Mallot et al., 1995). The present
study undertakes to extend this approach from mazes
to open environments. To this end, it was necessary to
generalize both the type of spatial representation used
and the mechanisms for constructing and utilizing this
representation. These points shall be explained in the
next section, followed by a description of an experi-
mental investigation with simulations and robot imple-
mentations. We conclude our study with a discussion
of the results.

Navigation in Open Environments

Discrete Representation of Continuous
Space

In view—based navigation, we use visual information to
guide navigation in a 2—dimensional space. The reason
why this is feasible at all is the fact that there is a con-
tinuous mapping between position space (which could
contain also the direction of view) and the space of all
possible views: for each spatial position, a certain view

is perceived, and this view changes continuously as the
observer moves around in space.? Unfortunately, this
mapping can be singular, as identical views can occur
at different spatial locations, 1.e. there need not be a
global coordinate system (of spatial positions) on the
manifold of all possible views (cf. Fig. 1). In principle,
this can be dealt with using history information: in
points with ambiguous views, we can use the informa-
tion that the observer moves continuously, and hence
choose a location which is consistent with the last posi-
tion. Complete knowledge of this manifold would thus
be a very powerful means of determining one’s spa-
tial position. Memory and computation requirements,
however, prohibit storing everything. Moreover, if we
are not interested in determining positions at arbitrary
times, but rather in carrying out specific navigation
tasks, as for instance path planning, this is not at all
necessary. In that case, it could be sufficient to store
views which allow the description of relevant paths.
Considerations along these lines lead to a weaker rep-
resentation of the view manifold, namely by a graph of
representative views and connections.

Graph—based representations of space have been em-
ployed in a number of studies (McNaughton, 1989; for
reviews, see O’'Keefe, 1991, Gallistel, 1990). We choose
as our starting point the scheme of Scholkopf and Mal-
lot (1995), which consists of a graph of views at the
junctions of a maze. In discretized environments like
mazes, there is a canonical set of views to store: since
no movement decisions need to be taken while travers-
ing corridors, the views necessary to support path plan-
ning are solely those at junctions. In generalizing the
view graph scheme to the case of open environments,
we have to find a set of views which are representative
for the manifold (in the following referred to as snap-
shots), with connections between them. The resulting
graph connectivity is subject to the following trade—off:
each connection which is added allows the representa-
tion to get closer to the original manifold, however if
the connections cannot be travelled along reliably, the
graph becomes a poor means of path planning.

Finally, if we restrict ourselves to the use of purely
topological information, excluding e.g., to label the
graph connections with directions, it is imperative to
use a method by which we are able to find views which
are connected to a given start view. Following the us-
age in the literature, we will refer to such a method as
homing.

In the next two sections, we describe the two crucial
components of our scheme; namely the procedures for
taking snapshots and for homing. Following that, we
shall explain how these components can be combined
into graph learning strategies.

21If the views are vectors where each component was
recorded with a Gaussian receptive field, the view will be
a smooth function of the position.

Figure 1: Caricature of the view manifold, consisting
of all views that can be seen by a continuously moving
observer. The manifold is embedded in a Euclidean
space whose dimensionality is the number of camera
pixels. The actual structure of the manifold is much
more complicated, with holes caused by obstacles, and
including a tubular structure due to the possibility to
take snapshots at all directions between 0° and 360°.
Point P marks a singularity of the coordinate system
inherited from position space: e.g., if one moves along
the dotted path, the same view occurs twice at differ-
ent spatial locations. Similarly, there could be regions
in position space where the visual input locally does
not change, leading to another type of coordinate sin-
gularity (not depicted).

Sampling the View Manifold with
Snapshots

The nodes of the view graph are identified with
snapshots of the surrounding panorama, namely 360°
records of the horizontal grey value distribution. This
has several advantages for homing and place recogni-
tion:

1. If a robot translates on a planar surface, then the
poles of expansion and contraction of the generated
flow field are on the horizon. All objects lying on a
great circle through the poles of the flow field will
not leave the circle during translatory movement.
Apart from the possibility of occlusion, this means
that they remain visible in the 360° sensor during
motion.

2. Similarly, circles perpendicular to the axis of rota-

tion are invariant under rotations: if the robot ro-
tates on a flat surface, objects do not change their
altitude in the visual field. As the horizon is a great
circle perpendicular to the above axis of rotation, we

also have invariance under translation, thus objects
cannot leave it by arbitrary robot movements in the
plane.

3. If the center of the sensor ring is placed at the rota-
tion axis, the rotational and translational flow field
can easily be separated: Rotation causes a uniform
flow field on the sensor ring which can easily be de-
termined and subtracted to obtain the translational

flow field.

These considerations illustrate that disadvantages re-
sulting from analyzing just a small image region can in
some respects be outweighed by special properties of a
carefully chosen subregion.

Ideally, the set of snapshots taken to represent a
given environment should satisfy two criteria: first, the
views should be distinguishable — in purely graph-
based maps, stipulating that the graph nodes be dis-
tinguishable is the only way to guarantee the possi-
bility of navigation to specific views. Second, the dis-
tance of neighbouring views in position space should
be small enough to allow reliable navigation between
them. In the present study, we adapt the spacing of
the snapshots to the rate of change of the incoming
images by imposing a minimum image distance on the
snaphots taken. Whenever this minimum distance is
exceeded by the presently perceived view, a new snap-
shot is taken.

More general, this can be viewed as a pattern clas-
sification problem. To solve this problem, we used
learning machines which we trained on data gener-
ated by the robot during exploration. The classifier
has to detect whether a given view belongs to a loca-
tion that is closer than a given distance expressed by
a time delay t4 (the robot moves with constant veloc-
ity). To construct training examples the robot carries
out an exploration consisting of straight movements
with lengths uniformly drawn from [0, 2¢4]. After each
line segment, a snapshot is taken and a new movement
direction is chosen at random. The two classes of train-
ing examples then comprise view pairs with a connect-
ing segment line shorter or longer than the equivalent
of t4, respectively.® This approach thus connects the
two different metrics which can be found on the view
manifold: we infer spatial closeness of views from their
degree of similarity.

After training, we have a classifier which, for a given
environment, is able to detect whether views are (spa-
tially) distant enough. Clearly, the same classifier can
also be used to detect proximity — we shall come back
to this point below, when we describe methods of learn-
ing short—cut connections in graphs.

#Clearly, this simplistic strategies could be improved:
we are free to tailor the exploration to the needs of the
classifier that we want to train (active learning). Moreover,
there are two obvious ways of preprocessing the input data;
first, one can use the difference image as the input to our
classifiers, second, one can even reduce the input to the
Fuclidean distance of the two views.

For an experiment, we generated 5000 32—
dimensional training examples in a simulated envi-
ronment (Fig. 7), and another 5000 test examples,
recorded in the same exploration after the training ex-
amples. As classifier input, we used the Euclidean dis-
tance of the two view vectors, after first rotating one of
them such as to maximize the overlap with the other
one. A simple thresholding classifier then achieved
classification error rates of 15%. Fig. 2 shows the dis-
tributions of view distances (after rotation) for the two
classes.

1.0[

0.8 b

0.0l s
0 1 2 3 4
image distance d

Figure 2: View distance distribution of spatially close
(left curve) and distant (right curve) views. We used
5000 examples generated in the environment in Fig. 7
(see text). The spatial distance threshold defining the
two classes was set to 1/10 of the arena’s diagonal. The
images were vectors in [—1,1]32.

Navigating between Places: View—based
Homing

Due to their limited information processing capabili-
ties, insects use very effective optical navigation meth-
ods which require only modest computational efforts.
This makes them a natural prototype for robotic im-
plementations, where computational costs often pro-
hibit implementation of more complex visual algo-
rithms. The homing method described in this section
is based on two ideas taken from insect biology: first,
the so-called snapshot theory and second, matched
filters. The snapshot theory has been developed by
Cartwright and Collett (1987) to explain the search
behaviour of honey bees which enables them to relo-
cate a food source using a snapshot of the surrounding
scenery taken during a previous visit. The direction
of the food source after a displacement can be inferred
from the actual view by comparing it to the snapshot:
image regions in the direction of the displacement are
expanded while the image in the direction of the food
source is contracted.

Cartwright and Collett propose to compare the rela-
tive bearings of nearby objects for this task. This poses

some problems from an algorithmic point of view: ob-
jects have to be separated from the background and
the correspondence of their images in the snapshot and
the actual view must be established. One need not
solve these problems explicitely if one uses matched
filters incorporating prior knowledge about expected
displacements. For instance, to detect self-motion dur-
ing flight, the blowfly Calliphora uses a matched neural
filter coding for optical flow patterns which are similar
to retinal motion fields experienced during translation
or rotation (Krapp, & Hengstenberg 1996). The de-
gree of match between the predefined flow field and
the currently perceived field determines the strength
of the filter signal which can be used to correct the
deviations.

Figure 3: Change ¢ of the viewing angle of point P af-
ter displacing a ring sensor at a distance d in direction
a and rotating it by ¢

This idea can also be used in the above opti-
cal homing method. Assume we have a sensor ring
which allows to record a 360° view of the surround-
ing panorama. The position of an image point on the
sensor ring is denoted by the angle . We displace the
sensor ring in direction « by a distance d and change
its orientation by the angle . The image of Point P
at distance r is shifted from 6 to a new position 6 + 4.
For the triangle in Fig.3 we obtain the relation

r sin(0 —a+y¢+9)

d- sin(y + 9) M
which implies
. dsin(f —) .
/ —
tan(y +9) = r—dcos(f —a)’ @)

Let R be the average distance of all points that gener-
ate the image, and write r = R+r'.* Eq. (2) now has

*Note, that no assumptions have been made regarding
the distance of the points after the movement.

the form

4 sin(0 — a)
t 3) = I - 3
an(y +9) 1+%—%cos(6—a))

For ' « R and d € R Eq. (3) becomes independent

of ' J
tan(y + 0) ~ I sin(f — «), (4)

and therefore independent of the specific object dis-
tances. The approximation holds if the visible objects
do not differ largely in distance and the robot’s move-
ment is small compared to the object distances.

The flow field on the ring generated by Eq. (4) can
be used as a matched filter which has to be matched
in the three parameters v, a and d/R. This is done
the following way: for all parameter values the current
view is warped using Eq. (4) and subsequently com-
pared to the snapshot at the home position. The value
of a obtained from the best match gives an estimate
of the home direction.

The change of object azimuth after displacement has
been used by several groups for homing tasks. Hong
et al. (1991) identified and matched image features
in panoramic images with constant orientation. They
used this scheme to successfully guide a mobile robot
along a corridor. The scheme of Basri and Rivlin
(1995) linearly interpolates between image features in
model views and infers home direction from the in-
terpolation coefficients, but works only from a fixed
starting position. Wittmann (1995) calculated the flow
field using a correlation scheme on a resolution pyra-
mid. In Rofer’s approach (1995) a Kohonen network
had to learn the correspondence between snapshot and
momentary view.

The matching of three parameters requires rel-
atively small computational resources compared to
other methods for the calculation of optic flow. On an
SGI Indy workstation, the calculation of a home vec-
tor from 78-dimensional views took below 40 ms which
allows real time image processing at video rate. The
continuous home vector calculation ’on the run’, re-
sults in smooth trajectories to the home position. The
speed of this method could be further improved by esti-
mating the parameters ¢ and d/R independently from
image data, but this topic will be addressed elsewhere.

The applicability of the approximation in Eq. (4)
was tested first in virtual reality simulations using in-
door and outdoor scenes (cf. Fig. 8). Fig. 4 shows
the results for different distances d. To evaluate the
accuracy of our method we use the average homeward
component of the estimated home vector. As long as
the value stays above zero, the robot moves on the av-
erage nearer to the goal marked by the snapshot. As
a practical definition for the radius of the snapshot’s
catchment area, we take the distance where the home-
ward component falls below 0.5. This means that in-
side this area the average radial component towards the
goal is larger than the tangential component. As can

be seen from Fig.4 the actual catchment area is much
larger than could be expected from Eq. (3). This can
be explained by the fact that the sign of the displace-
ment stays the same also for larger values of d/R, so
that the linear approximation of the best match still
gives good results beyond its mathematical limit. Ex-
periments on real robots showed that the robustness of
the scheme persisted under noisy real world conditions
imposed by camera and video transmission. The high
update rate and the symmetry properties are able to
cancel the noise effects on the homing performance to
a high degree. Statistical data from experiments with
real robots are currently being gathered.

1.0[

0.8

0.6

average homeward component

0.0l s,
0.00 0.10 0.20 0.30 0.40
spatial distance

Figure 4: Average homeward component, for views be-
longing to 10000 pairs of random locations, obtained
from Eq. (4) in the environment in Fig. 7. Distances
are measured relative to the arena’s diagonal.

The accuracy with which a point can be reached de-
pends mainly on the angular resolution of the sensor
ring, namely the number of sensor elements and their
receptive fields. A displacement can only be detected
if it generates a sufficient angular shift. In Fig. 4 the
sharp decrease of the homeward component marks the
distance from which the location cannot be approached
further. The point at which the home vectors gener-
ated by the scheme become inconsistent can be used
to decide if the goal has been reached.

Graph Learning

In order to learn view graphs, the two procedures de-
scribed above for taking snapshots and homing towards
them have to be complemented by additional build-
ing blocks which will be described in the following (cf.
Fig. 5).

Route learning. As explained before, the system uses
a classifier to decide wether all recorded nodes are suf-
ficiently distant. If this condition is fulfilled, the robot

takes a new snapshot and links it to the last one. This
route learning procedure has no way of forming new
connections to previously visited views, i.e. the result-
ing graphs will be mere chains. By adding the following
simple behaviour, we can get nontrivial graphs:

Link verification. Whenever one of the previously
stored views is found to be spatially close to the cur-
rent view, and the connection between the last snap-
shot and the one found to be close has not yet been
learnt, we decide to home to the latter one. If homing is
successful, we include the newly learnt connection into
the graph. Deciding whether a previously stored view
is spatially close to the current view again is a pat-
tern classification problem which can be solved with
the methods described above. Thus, the classifier has
two tasks in our system: to decide when to take snap-
shots and to detect candidates for shortcuts between
the chains of the graph.

If an already linked view is found to be in the direc-
tion of the next exploration step the system homes to
it as well. This procedure does not produce additional
knowledge, but has the effect that links intersecting
previously stored links are less likely to be recorded.
Link verification could in principle also be used for the
links learnt by the route learning procedure. For rea-
sons of excessive exploration times, we did not resort
to this more cautious strategy.

Emergency behaviours. Distance sensors and
bumpers, with low-level escape behaviours, are used
to keep the robot away from obstacles. In cases where
the robot gets lost (e.g. if a verification was not suc-
cessful), we start a new graph, which will typically get
connected to the old one in due course. Areas where
bumpers or proximity sensors detect objects show a
high rate of change of the optical input due to large
image motion caused by nearby objects. Exploration
of these areas thus requires a large number of snap-
shots which would ultimately lead to a fractal graph
structure near objects. To prevent the navigation sys-
tem from getting ineffective, the robot is not allowed
to take new snapshots if nearby objects are detected.
The resulting graph structure tends to concentrate in
open space rather than around obstacles.

Local Exploration Strategies for Graph
Learning

The basic elements of our graph learning system have
been introduced in the last section, however, they do
not fully determine exploration strategies. E.g. noth-
ing has been said about how to choose a new movement
direction after a snapshot has been taken. The strate-
gies that we will present in the following have been
motivated by the principle of mazimizing knowledge
gain (Thrun, 1995). As we have not formalized any
notion of knowledge, this principle was used as a qual-

Move in exploration direction

Start

Classifier

All nodes
sufficiently different?

Unconnected
node nearby?

' | Take snapshot, connect

it to predecessor Home to node

Route | learning

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Choose next

‘ 1ext o If node found, add
exploration direction [«g—

new link to graph

Exploration Shortcut verification

Figure 5: Short sketch of the graph learning algorithm
used.

itative guideline. In the context of spatial represen-
tation, knowledge gain is possible for instance through
the recording of new links and new snapshots.® Clearly,
a high number of stored snapshots is desirable in order
to represent the environment accurately, on the other
hand, if they are not sufficiently connected by links,
they are not useful for path planning. In addition, the
distribution of the snapshots is equally important as
their number. We have tested a variety of rules and
behaviours in an attempt to ensure that the resulting
graph contains as much knowledge as possible.

In the following, we shall describe these rules, start-
ing from rules which apply to general exploration and
search problems. In our case, these concern primar-
ily the choice of the next direction to explore after a
snapshot has been taken.

Brownian exploration. The simplest conceivable rule
is just to choose a random direction and then to go
straight until the next snapshot. The resulting Brown-
ian motion pattern has the advantage that eventually
every accessible point of the environment will be ex-
plored without the danger that the exploring agent is
caught in an infinite loop. This strategy does not use
any knowledge about the environment and thus pro-
vides the baseline against which other search strategies
have to be compared.

Kinesis. A straightforward way to include optical in-
formation in a Brownian search is to adapt the turning
angle to the rate of change of the optical input. If for

5 As knowledge, we count everything which contributes
to making the map more useful for solving navigation tasks
like path planning (path planning on the graph can be done
with a variety of algorithms, e.g. as by Scholkopf and Mal-
lot, 1995).

instance the average turning angle or, as in the present
system, the turning frequency is increased when the op-
tical input changes rapidly, then areas which have to
be covered by a denser net of snapshots due to a rapid
change of views are also explored more thoroughly.

Fized turning angles. Good results have also been
achieved with fixed turning angles in combination with
the rules described later in this section. In general,
smaller angles lead to a faster coverage of the whole
accessible area, larger angles to a more thorough ex-
ploration.

The following exploration features makes use of the
local properties of the edges and nodes of the graph
being constructed.

Ezxploration of the largest open angle. Our navigation
scheme is designed such that all nodes of the view
graph remain in the catchment areas of their respec-
tive neighbours. This property can be used to choose
the next exploration direction, if a node has already
more than one link. The system determines the home
vectors to all neighbouring nodes and directs the next
exploration step in the largest open angle.

Limating the connectivity of nodes The effectivity of
exploration can be increased by limiting the number
of links a node can have. Similarly, the largest open
angle can also be used to determine wether a node has
been fully explored. If the largest open angle is smaller
than a preset value, or the number of links is higher
than a threshold, the system can go on to other nodes.
Using this strategy, exploration tends to diffuse to less
explored nodes and areas.

Non-links. The graph produced by the navigation
system so far includes no information about failed ac-
tions as e.g. obstacle encounters during exploration
or failed verification of shortcuts. The exploration can
be made far more effective by memorizing failed ac-
tions as “non-links” thus preventing them from being
repeated. This is also a way of including information
about obstacles in the graph structure.

In this study we were only interested in evaluat-
ing the performance of local rules, but the approach
can easily be extended to include global rules such as
searching the graph for less explored nodes, or deleting
unnecessary links.

Fig. 6 shows experimental data illustrating some
properties of our scheme. In the simulated exploration,
we first observe an increase in the number of both
graph nodes and links; however after some time al-
most no new snapshots are taken — the view manifold
has been sufficiently densely sampled, while the ver-
ification procedure still adds new links to the graph.
Fig. 7 shows an example of a learnt view graph. To

400F
3 links
300 £
< F]
3 200F ;
© F i
F nodes]
100 e IR =
o) % e T
0 500 1000 1500

time

Figure 6: Numbers of graph nodes and links as func-
tions of exploration time during a typical exploration
run. It can be seen that due to filling in of short—
cut links, the number of links still increases when the
number of nodes has almost reached its final size. The
diagonal of the arena (Fig. 7) can be traversed in ap-
proximately 30 time units.

assess the reliability of the acquired view graph, we
tested whether the simulated robot was able to repro-
duce the recorded links by homing. Out of all graph
links, the success rate was always between 94% and
98%.

Implementation
Simulations

Virtual reality. The navigation system described in
the previous sections was developed and tested in sim-
ulated environments before it was exposed to real world
conditions on a robot platform. Since the algorithms
are completely view driven we put special emphasis
on the creation of realistic image sequences. For this
purpose we used the virtual reality software package
“SGI Performer”” on a high performance graphics
computer (SGI Onyx Reality Engine 2). The navi-
gation system controlled the movements of a virtual
agent in various indoor and outdoor scenarios as shown
in Fig. 8. Training data for classifiers and evaluation
data for the homing scheme can be obtained in rela-
tively short time from simulation runs in this type of
virtual environment.

Two—-dimensional world. For the evaluation of the ex-
ploration strategies, realistic view conditions play only
a minor role. Therefore, we simulated very simple two-
dimensional models of the kind shown in Fig. 7. Views
were obtained using standard ray—tracing techniques.
Since the thorough exploration of a non-trivial envi-
ronment is very time consuming, the computational
simplicity of these models allowed us to test the dif-
ferent strategies in a variety of different environments
with complex topology.

.\\.\ i

i

RNV S
VAT
‘\“ }"4!_;_14‘1;“

"‘\‘Avﬁl N

9
." _

Figure 7: A simple arena, with random triangles, which
was used in part of the experiments (see text). The
depicted graph shows locations of snapshots and con-
nections.

Figure 8: Virtual reality environment used in the sim-
ulations.

Mobile robot

360° sensor. In the next stage, we implemented the
navigation system on a mobile robot (Fig. 9). The me-
chanical base consists of a six-wheeled model ground
vehicle supplemented by bumpers, infrared proximity
sensors and a frame for various instruments. The imag-
ing system comprises a conical mirror mounted above a
video camera which points up to the center of the cone
(Fig. 10). This configuration allows for a 360° horizon-
tal view field extending from 10° above the horizon to
30° below it. A similar imaging technique was used by
Chahl and Srinivasan (1996) and Yagi, Nishizawa, &
Yachida (1995).

First implementation with video transmission. 1In the
first version, the video image was transmitted to a work
station and subsequently sampled on four circles along
the horizon line with a resolution of 2.5° The circles
are averaged radially to cope with errors caused by

Figure 9: Mobile robot platform in the office environ-
ment where the homing experiments were performed.

misalignment of mirror and camera, tilt of the robot
platform or inaccurate placing of the circles. To pre-
vent aliasing effects and to reduce the noise level the
resulting array of grey levels is spatially and temporally
low pass filtered and in a final step contrast maximized.
Based on this data our navigation scheme calculated
movement decisions which were transmitted again via
a wireless modem to an on-board Motorola 68332 con-
troler. Besides motor control the 68332 was used to
monitor and communicate the bumper and internal
variables back to the work station. The slow wire-
less serial communication process limited the response
time of the system to 200 ms.

On-board processing. To avoid the problems caused
by the video transmission in indoor environments we
implemented our navigation scheme in a second version

Figure 10: 360°—camera with conical mirror (scale in
cm)

on the on-board controler. To provide image data di-
rectly to the controler, the video images were digitized
on-board and written to memory by a Xilinx FC 4003
FPGA chip. In spite of the limited image processing
capabilities of the 68332, we still were able to reach
update rates up to 1.3/s because of the relatively low
computational requirements of the homing algorithm.
Fig. 9 shows an environment where the robot was able
to home from distances of about a meter; a thorough
experimental evaluation remains to be done.®

Miniature prototype. A third prototype has been im-
plemented on a miniature Khepera”* robot (Fig. 11)
which will allow extensive exploration runs to test the
exploration strategies under real world conditions in
small scale environments.

Figure 11: Khepera”™™ robot with camera and conical
mirror.

Discussion

Our results indicate that view graph based navigation
is a feasible alternative to classical robotic navigation
schemes relying on metric maps. A graph represen-
tation is a useful tool for condensing the task relevant
information out of the overwhelming influx of data pro-
vided by image sensors. Moreover, the integration of
other information sources in a common graph repre-
sentation is a straightforward procedure. Nodes may
contain information about different input and internal
states. Lieblich and Arbib (1982), for instance, ar-
gue that animals use a graph where nodes correspond
to recognizable situations. A generalization of purely

5For an MPEG movie of the robot in action, check
http://www.nmpik-tueb.mpg.de/people/personal/bs/
sokke.html.

topological maps are graphs where links are labelled
by actions (e.g. Kuipers & Byun, 1988, Schélkopf &
Mallot, 1995). This way, systems can be built which
are not confined to just one type of action (in our case,
this was a homing procedure). If metric information
is available, graph labels can include directions to the
neighbouring nodes, thus extending the allowed dis-
tance between snapshots. In an ongoing project, we
are investigating an optical path integration system
for this purpose. In contrast, the purely topological
approach of the present study relies on the availabil-
ity of a local mechanism to reach neighbouring nodes.
Already this simple scheme, however, allows to solve
complex navigation like path planning: once the graph
has been learnt, one can generate a path to a goal by
standard search algorithms, and then sequentially nav-
igate along this path by homing. Although presented
for navigation problems, similar approaches may well
be feasible for other cognitive planning tasks to be
performed by autonomous agents, along the lines of
Tolman’s (1932) means—end-fields, which can be con-
ceived of as directed graphs with means— and goal-
objects as nodes and means—end-relations as edges.

The navigation system was developed and evaluated
to a great extent in virtual environments. We noticed,
however, that in spite of the high degree of realism
certain details of the practical implementation are eas-
ily overlooked in simulations. For example, in a sim-
ulation, the movement of the agent can be confined
exactly in a plane, while views can be taken with con-
stant orientation. The strong influence of view orienta-
tion or sensor tilt on the system’s performance cannot
be detected in such a simulation. Generally there is
no guarantee that all relevant features of the environ-
ment have been included in the simulation which makes
robotic implementations still irreplacable.

In spite of the progress neuroscience has made in
explaining behaviour, many of the underlying mech-
anisms remain unknown due to the complexity of the
interaction of the nervous system with its environment.
In contrast to the analytic way of studying behaviour
and its neural substrate in increasing detail, one can
approach this problem from the other end: by syn-
thesizing behaviour using known mechanisms. We use
this approach to study the most basic mechanisms of
navigation behaviour. As simulations and robot im-
plementations illustrate, these minimal strategies are
sufficient to allow successful navigation under realis-
tic environmental conditions. Since the more complex
navigation mechanisms of higher animals and man de-
veloped from preexisting simpler ones, we believe that
the understanding of the most basic strategies will pro-
vide the foundation for understanding and implement-
ing high level navigation skills.

References
I. A. Bachelder and A. M. Waxman. A view—

based neurocomputational system for relational map-

making and navigation in visual environments.
Robotics and Autonomous Systems, 16:267 — 289,
1995.

R. Basri and E. Rivlin. Localization and homing using
combinations of model views. Artificial Intelligence,
78:327 — 354, 1995.

V. Braitenberg. Vehicles. Experiments in Synthetic
Psychology. MIT Press, Cambridge, MA, 1984.

B. A. Cartwright and T. S. Collett. Landmark maps
for honeybees. Biological Cybernetics, 57:85 — 93,
1987.

J. S. Chahl and M. V. Srinivasan. Visual computation
of egomotion using an image interpolation technique.
Biol. Cybern., 74:405 — 411, 1996.

T. S. Collett. Insect navigation en route to the goal:
Multiple strategies for the use of landmarks. J. exp.
Biol., 199:227 — 235, 1996.

C. R. Gallistel. The Organization of Learning. MIT
Press, Cambridge, MA, 1990.

J. Hong, X. Tan, B. Pinette, R. Weiss, and E. M.
Riseman. Image-based homing. In Proc. IEEE Intl.
Conf. on Robotics and Automation 1991, pages 620 —
625, 1991.

H. G. Krapp and R. Hengstenberg. Estimation of
self-motion by optic flow processing in single visual
interneurons. Nature, 1996. in press.

B. J. Kuipers and Y. Byun. A robot exploration and
mapping strategy based on a semantic hierarchy of
spatial representations. Journal of Robotics and Au-
tonomous Systems, 8:47 — 63, 1991.

I. Lieblich and M. A. Arbib. Multiple representations
of space underlying behavior. Behavioral and Brain

Sciences, 5:627 — 659, 1982.
H. Mallot, H. Biilthoff, P. Georg, B. Scholkopf, and

K. Yasuhara. View—based cognitive map learning by
an autonomous robot. In F. Fogelman-Soulié and
P. Gallinari, editors, Proceedings ICANN’95 — In-
ternational Conference on Artificial Neural Networks,
volume II, pages 381-386. EC2, Nanterre, France,
1995.

M. J. Mataric. Navigating with a rat brain: a
neurobiologically—inspired model for robot spatial
representation. In J.-A. Meyer and S. W. Wilson,
editors, From Animals to Animats. MIT Press, Cam-
bridge, MA, 1991.

B. L. McNaughton. Neuronal mechanisms for spatial
computation and information storage. In L. Nadel,
L. A. Cooper, P. Culicover, and R. M. Harnish, edi-
tors, Neural Connections, Mental Computation. MIT
Press, London, 1989.

J. O’Keefe. The hippocampal cognitive map and nav-
igational strategies. In J. Paillard, editor, Brain and
Space, pages 273 — 295. Oxford University Press, Ox-
ford, 1991.

T. Rofer. Controlling a robot with image-based hom-
ing. In Kognitive Robotik (ZKW-Bericht), volume
3/95, pages 1 — 11, 1995.

B. Scholkopf and H. A. Mallot. View-based cogni-
tive mapping and path planning. Adaptive Behavior,
3:311 - 348, 1995.

E. C. Tolman. Purposive Behavior of Animals and

Men. Irvington, New York, 1932.

R. Wehner, B. Michel, and P. Antonsen. Visual navi-
gation in insects: Coupling of egocentric and geocen-
tric information. J. exp. Biol., 199:129 — 140, 1996.

T. Wittmann. Modeling landmark navigation.
In Kognitive Robotik (ZKW-Bericht), volume 3/95,
pages 1 — 16, 1995.

Y. Yagi, Y. Nishizawa, and M. Yachida. Map-based
navigation for a mobile robot with omnidirectional
image sensor COPIS. [EFEE Trans. Robotics Au-
tomat., 11:634 — 648, 1995.

