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Abstract. The tangential neurons in the fly brain are sensitive to the
typical optic flow patterns generated during self-motion. In this study,
we examine whether a simplified linear model of these neurons can be
used to estimate self-motion from the optic flow. We present a theory
for the construction of an optimal linear estimator incorporating prior
knowledge about the enviroment. The optimal estimator is tested on a
gantry carrying an omnidirectional vision sensor. The experiments show
that the proposed approach leads to accurate and robust estimates of
rotation rates, whereas translation estimates turn out to be less reliable.
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1 Introduction

A moving visual system generates a characteristic pattern of image motion on
its sensors. The resulting optic flow field is an important source of information
about the self-motion of the visual system [1]. In the fly brain, part of this infor-
mation seems to be analyzed by a group of wide-field, motion-sensitive neurons,
the tangential neurons in the lobula plate [2]. A detailed mapping of their local
motion sensitivities and preferred motion directions [3] reveals a striking simi-
larity to certain self-motion-induced flow fields (an example is shown in Fig. 1).
This suggests a possible involvement of the tangential neurons in the self-motion
estimation process which might be useful, for instance, for stabilizing the fly’s
head during flight manoeuvres.

A recent study [4] has shown that a simplified computational model of the
tangential neurons as a weighted sum of flow measurements was able to reproduce
the observed response fields. The weights were chosen according to an optimality
principle which minimizes the output variance of the model caused by noise and
distance variability between different scenes. The question on how the output
of such processing units could be used for self-motion estimation was left open,
however.

In this paper, we want to fill a part of this gap by presenting a classical lin-
ear estimation approach that extends a special case of the previous model to the
complete self-motion problem. We again use linear combinations of local flow
measurements, but - instead of prescribing a fixed motion axis and minimizing
the output variance - we require that the quadratic error in the estimated self-
motion parameters be as small as possible. From this optimization principle, we
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Fig. 1. Mercator map of the response field of the neuron VS7. The orientation of each
arrow gives the local preferred direction (LPD), and its length denotes the relative
local motion sensitivity (LMS).

derive weight sets that lead to motion sensitivities similar to those observed in
tangential neurons (Sect. 2). In contrast to the previous model, this approach
also yields the preferred motion directions and the motion axes to which the
neural models are tuned. We subject the obtained linear estimator to a rigorous
real-world test on a gantry carrying an omnidirectional vision sensor (Sect. 3).
The experiments show that the proposed approach leads to accurate and ro-
bust estimates of rotation rates, whereas translation estimates turn out to be
less reliable. We conclude from these results that the simple, computationally
cheap neural estimator constitutes a viable alternative to the more elaborate
schemes usually employed in computer vision, especially in tasks requiring fast
and accurate rotation estimates such as, e.g., sensor stabilization (Sect. 4).

2 Modeling fly tangential neurons as optimal linear
estimators for self-motion

2.1 Sensor and neuron model

In order to simplify the mathematical treatment, we assume that the N elemen-
tary motion detectors (EMDs) of our model eye are arranged on the unit sphere.
The viewing direction of a particular EMD with index 4 is denoted by the ra-
dial unit vector d;. At each viewing direction, we define a local two-dimensional
coordinate system on the sphere consisting of two orthogonal tangential unit
vectors u; and v; (Fig. 2a). We assume that we measure the local flow compo-
nent along both unit vectors subject to additive noise. Formally, this means that
we obtain at each viewing direction two measurements z; and y; along u; and
v;, respectively, given by

Ti =Pi-W+Nng; and Y =Pi-Vi+ Ny, (1)
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Fig. 2. a. Sensor model: At each viewing direction d;, there are two measurements
z; and y; of the optic flow p; along two directions u; and v; on the unit sphere. b.
Simplified model of a tangential neuron: The optic flow and the local noise signal are
projected onto a unit vector field. The weighted projections are linearly integrated to
give the estimator output.

where n,; and n,; denote additive noise components and p; the local optic
flow vector®. The formulation as a scalar product between the flow and the unit
vector implies a linear motion sensitivity profile of the EMD used to obtain the
flow measurement. In the fly, this is only the case at low image velocities. At
higher velocities, real EMDs show a saturation and a subsequent decrease in
their response.

When the spherical sensor translates with T while rotating with R about an
axis through the origin, the self-motion-induced image flow p; at d; is [5]

pi = —pi(T — (T -d;)d;) — R x d;. (2)

W; is the inverse distance between the origin and the object seen in direction d;,
the so-called “nearness”. The entire collection of flow measurements z; and y;
comprises the input to the simplified neural model of a tangential neuron which
consists of a weighted sum of all local measurements (Fig. 2b)

N N
0= Z Wz, iTi + Zwyzyz (3)
i i

with local weights w, ; and w,,;. As our basic hypothesis, we assume that the
output of such model neurons is used to estimate the self-motion of the sensor.
Since the output is a scalar, we need in the simplest case an ensemble of six
neurons to encode all six rotational and translational degrees of freedom. The
local weights of each neuron are chosen to yield an optimal linear estimator for
the respective self-motion component.

3 This measurement model corresponds to the special case of the linear range model
described in [4], Eq. (5).



2.2 Prior knowledge and optimized neural model

The estimator in Eq. (3) consists of a linear combination of flow measurements.
Even if the self-motion remains exactly the same, the single flow measurements
- and therefore the estimator output - will vary from scene to scene, depending
on the current distance and noise characteristics. The best the estimator can do
is to add up as many flow measurements as possible hoping that the individual
distance deviations of the current scene from the average will cancel each other.
Clearly, viewing directions with low distance variability and small noise content
should receive a higher weight in this process. In this way, prior knowledge about
the distance and noise statistics of the sensor and its environment can improve
the reliability of the estimate.

If the current nearness at viewing direction d; differs from the the average
nearness fi; over all scenes by Au;, the measurement x; can be written as (see
Eqns. (1) and (2))

5= (] s x 4)7) () # 1es — A, 0

where the last two terms vary from scene to scene, even when the sensor under-
goes exactly the same self-motion.

To simplify the notation, we stack all 2N measurements over the entire EMD
array in the vector x = (x1,%1,Z2,¥Y2,...,ZN,yn) ' . Similarly, the self-motion
components along the x-, y- and z-directions of the global coordinate systems
are combined in the vector § = (Tz,Ty,Tz,Rz,Ry,Rz)T, the scene-dependent
terms of Eq. (4) in the 2N-vector n = (ny1 — ApywiTyny 1 — ApgviT,..) T
and the scene-independent terms in the 6xN-matrix F = ((—giu;,—(u; x
d) "), (—f1vy,—(v1i xd;)T),....)T. The entire ensemble of measurements over
the sensor can thus be written as

x=F0+n. (5)

Assuming that T, ng ;, ny,; and p; are uncorrelated, the covariance matrix C' of
the scene-dependent measurement component n is given by

Cij = Cnij + Cpiju; Cruy (6)

with C), being the covariance of n, C,, of p and Cr of T. These three covariance
matrices, together with the average nearness [i;, constitute the prior knowledge
required for deriving the optimal estimator.

Using the notation of Eq. (5), we write the linear estimator as

§ = Wx. (7)

W denotes a 2INx6 weight matrix where each of the six rows corresponds to one
model neuron (see Eq. (3)) tuned to a different component of 6. The optimal
weight matrix is chosen to minimize the mean square error of the estimator
which results in the optimal weight set

W = %AFTO*1 (8)
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Fig. 3. Distance statistics of an indoor robot (0 azimuth corresponds to forward direc-
tion): a. Average distances from the origin in the visual field (IV = 26). Darker areas
represent larger distances. b. Distance standard deviation in the visual field (N = 26).
Darker areas represent stronger deviations.

with A = 2(FTC~'F)~1. When computed for the typical inter-scene covariances
of a flying animal, the resulting weight sets are able to reproduce the charac-
teristics of the LMS and LPD distribution of the tangential neurons [4]. Having
shown the good correspondence between model neurons and measurement, the
question remains whether the output of such an ensemble of neurons can be used
for some real-world task. This is by no means evident given the fact that - in
contrast to most approaches in computer vision - the distance distribution of the
current scene is completely ignored by the linear estimator.

3 Experiments

3.1 Distance statistics

As our test scenario, we consider the situation of a mobile robot in an office
environment. This scenario allows for measuring the typical motion patterns and
the associated distance statistics which otherwise would be difficult to obtain for

a flying agent.
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Fig. 4. Model neurons computed as part of the optimal estimator. Notation is identical
to Fig. 1. The depicted region of the visual field extends from —15° to 180° azimuth
and from —75° to 75° elevation. The model neurons are tuned to a. forward translation,
and b. to rotations about the vertical axis.

The distance statistics were recorded using a rotating laser scanner. The 26
measurement points were chosen along typical trajectories of a mobile robot
while wandering around and avoiding obstacles in an office environment. From
these measurements, the average nearness gi; and its covariance C), were com-
puted (Fig. 3, we used distance instead of nearness for easier interpretation).

The distance statistics show a pronounced anisotropy which can be attributed
to three main causes: (1) Since the robot tries to turn away from the obstacles,
the distance in front and behind the robot tends to be larger than on its sides
(Fig. 3a). (2) The camera on the robot usually moves at a fixed height above
ground on a flat surface. As a consequence, distance variation is particularly
small at very low elevations (Fig. 3b). (3) The office environment also contains
corridors. When the robot follows the corridor while avoiding obstacles, distance
variations in the frontal region of the visual field are very large (Fig. 3b).

The estimation of the translation covariance Cr is straightforward since our
robot can only translate in forward direction, i.e. along the z-axis. C'r is therefore
0 everywhere except the lower right diagonal entry which is the square of the
average forward speed of the robot (here: 0.3 m/s). The EMD noise was assumed
to be zero-mean, uncorrelated and uniform over the image, which results in a
diagonal C), with identical entries. The noise standard deviation of the used optic
flow algorith was 0.34 deg./s. i1, Cy, Cr and C,, constitute the prior knowledge
necessary for computing the estimator (Eqns. (6) and (8)).

Examples of the optimal weight sets for the model neurons (corresponding
to a row of W) are shown in Fig. 4. The resulting model neurons show very
similar characteristics to those observed in real tangential neurons, however,
with specific adaptations to the indoor robot scenario. All model neurons have
in common that image regions near the rotation or translation axis receive less
weight. In these regions, the self-motion components to be estimated generate
only small flow vectors which are easily corrupted by noise. Equation (8) predicts
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Fig. 5. Gantry experiments: Results are given in arbitrary units, true rotation values
are denoted by a dashed line, translation by a dash-dot line. Grey bars denote trans-
lation estimates, white bars rotation estimates a. Estimated vs. real self-motion; b.
Estimates of the same self-motion at different locations;

that the estimator will preferably sample in image regions with smaller distance
variations. In our measurements, this is mainly the case at the ground around
the robot (Fig. 3). The rotation-selective model neurons weight image regions
with larger distances more highly, since distance variations at large distances
have a smaller effect. In our example, distances are largest in front and behind
the robot so that the rotation-selective neurons assign the highest weights to
these regions (Fig. 3b).

3.2 Gantry experiments

The self-motion estimates from the model neuron ensemble were tested on a
gantry with three translational and one rotational (yaw) degree of freedom.
Since the gantry had a position accuracy below 1mm, the programmed position
values were taken as ground truth for evaluating the estimator’s accuracy.

As vision sensor, we used a camera mounted above a mirror with a circularly
symmetric hyperbolic profile. This setup allowed for a 360° horizontal field of
view extending from 90° below to 45° above the horizon. Such a large field
of view considerably improves the estimator’s performance since the individual
distance deviations in the scene are more likely to be averaged out. More details
about the omnidirectional camera can be found in [7].

In each experiment, the camera was moved to 10 different start positions in
the lab with largely varying distance distributions. The height above ground was
always that of the sensor position on the real mobile robot used in Sec. 3.1. After
recording an image of the scene at the start position, the gantry translated and
rotated at various prescribed speeds and directions and took a second image.
The recorded image pairs (10 for each type of movement) were unwarped, low-
pass-filtered and subsampled on a 9 x 152 grid with 5° angular spacing. For each
image pair, we computed the optic flow using an image interpolation technique



described in [8]. The resulting optic flow field was used as input to the model
neuron ensemble from which the self-motion estimates were computed according
to Eq. (7).

The average error of the rotation rate estimates over all trials (N=450) was
0.7°/s (5.7% rel. error, Fig. 5a), the error in the estimated translation speeds
(N=420) was 8.5 mm/s (7.5% rel. error). The estimated rotation axis had an
average error of magnitude 1.7°, the estimated translation direction 4.5°. The
larger error of the translation estimates is mainly caused by the direct depen-
dence of the translational flow on distance (see Eq. (2)) whereas the rotation
estimates are only indirectly affected by distance errors via the current trans-
lational flow component which is largely filtered out by the LPD arrangement.
The larger sensitivity of the translation estimates can be seen by moving the
sensor at the same translation and rotation speeds in various locations. The
rotation estimates remain consistent over all locations whereas the translation
estimates show a higher variance and also a location-dependent bias, e.g., very
close to laboratory walls (Fig. 5b). A second problem for translation estimation
comes from the different properties of rotational and translational flow fields:
Due to its distance dependence, the translational flow field shows a much wider
range of values than a rotational flow field. The smaller translational flow vec-
tors are often swamped by simultaneous rotation or noise, and the larger ones
tend to be in the upper saturation range of the used optic flow algorithm. This
can be seen by simultaneously translating and rotating the sensor (not shown
here). Again, rotation estimates remain consistent while translation estimates
are strongly affected by rotation.

4 Conclusion

Our experiments show that it is indeed possible to obtain useful self-motion es-
timates from an ensemble of linear model neurons. Although a linear approach
necessarily has to ignore the distances of the currently perceived scene, an ap-
propriate choice of local weights and a large field of view are capable of reducing
the influence of noise and the particular scene distances on the estimates. In
particular, rotation estimates were highly accurate - in a range comparable to
gyroscopic estimates - and consistent across different scenes and different si-
multaneous translations. Translation estimates, however, turned out to be less
accurate and less robust against changing scenes and simultaneous rotation. The
first reason for this performance difference is the direct distance dependence of
the translational flow which leads to a larger variance of the estimator out-
put. This problem can only be overcome by also estimating the distances in the
current scene (as, e.g., in the iterative scheme in [5]) which requires, however,
significantly more complex computations. The second reason is the limited dy-
namic range of the flow algorithm used in the experiments, as discussed in the
previous section. One way to overcome this problem would be the use of a flow
algorithm that estimates image motion on different temporal or spatial scales
which is, again, computationally more expensive.



Our results suggest a possible use of the linear estimator in tasks that require
fast and accurate rotation estimates under general self-motion and without any
knowledge of the object distances of the current scene. Examples for such tasks
are image stabilization of a moving camera, or the removal of the rotational com-
ponent from the currently measured optic flow. The latter considerably simplifies
the estimation of distances from the optic flow and the detection of independently
moving objects. In addition, the simple architecture of the estimator allows for
an efficient implementation with a computational cost which is several orders of
magnitude smaller than the cost of computing the optic flow input.

The components of the estimator are simplified model neurons which have
been shown to reproduce the essential receptive field properties of the fly’s tan-
gential neurons [4]. Our study indicates that, at least in principle, the output of
such neurons could be directly used for self-motion estimation by simply combin-
ing them linearly at a later integration stage. As our experiments have shown,
the achievable accuracy would probably be more than enough to stabilize the
fly’s head during flight under closed loop conditions.

Finally, we have to point out a basic limitation of the proposed theory: It
assumes linear EMDs as input to the neurons (see Eq. (1)). The output of fly
EMDs, however, is only linear for very small image motions. It quickly satu-
rates at a plateau value at higher image velocities. In this range, the tangential
neuron can only indicate the presence and the sign of a particular self-motion
component, not the current rotation or translation velocity. A linear combination
of output signals, as in our model, is no more feasible but would require some
form of population coding. In addition, a detailed comparison between the linear
model and real neurons shows characteristic differences indicating that, under
the conditions imposed by the experimental setup, tangential neurons seem to
operate in the plateau range rather than in the linear range of the EMDs [4].
As a consequence, our study can only give a hint on what might happen at
small image velocities. The case of higher image velocities has to await further
research.
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