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Abstract

In visual homing tasks, animals as well as robots
can compute their movements from the current
view and a snapshot taken at a home position.
Solving this problem exactly would require knowl-
edge about the distances to visible landmarks, in-
formation, which is not directly available to pas-
sive vision systems. We propose a homing scheme
that dispenses with accurate distance information
by using parameterized disparity fields. These
are obtained from an approximation that incor-
porates prior knowledge about perspective distor-
tions of the visual environment. A mathemat-
ical analysis proves that the approximation does
not prevent the scheme from approaching the goal
with arbitrary accuracy. Mobile robot experi-
ments are used to demonstrate the practical fea-
sibility of the approach.

1 Introduction

For many animal species it is vital to be able to find their
way back to a shelter or to a rewarding food source. In
particular, flying animals cannot rely on idiothetic infor-
mation for this task, as they are subject to drift. Thus
they have to use external information, often provided by
vision. A location may be identified visually using one
of two methods: first, by association with an image of
the location (recorded while approaching or leaving it),
or second, by association with an image of the panorama
as seen from the location. These two methods depend on
the visual characteristics of the location, and determine
how such a snapshot can be used to recover its associ-
ated spatial position: if the location itself is marked by
salient optical features, these can be tracked until the
goal is reached (e.g. Collett 1996). If there are no such
features, the goal direction after a displacement has to
be inferred by comparing the current visual input to the
snapshot: image regions in the direction of the displace-
ment are expanded while the image in the goal direc-
tion is contracted. Driving into the direction of maximal
image contraction finally leads to the goal position (cf.
Figure 1).

Note that even though neither of the two possible
approaches necessarily requires recognition mechanisms,
our distinction already foreshadows another distinction
which is known in the domain of recognition, namely
the one between object recognition and scene recognition
(see e.g. Tarr & Biilthoff, 1996). As in our case, these
two domains differ in that the former deals with some-
thing localized in space that the observer is not part of,
whereas the latter deals with something non—local, sur-
rounding the observer. Inspired by this distinction, we
shall use the term scene-based homing to refer to visual
homing strategies which make use of the whole scene,
rather than tracking single objects.

A number of experiments have shown that inverte-
brates such as bees or ants are able to pinpoint a location
defined by an array of nearby landmarks (see Collett 1992
for a review). Apparently, these insects search for their
goal at places where the retinal image forms the best
match to a memorized snapshot. Cartwright and Collett
(1983) have put forward the hypothesis that bees might
be able to actively extract the goal direction by a mecha-
nism using the azimuth and size change of visible objects
after a displacement.

In the present work, we want to approach homing from
a different viewpoint: Rather than proposing a model or
mechanisms underlying actual insect behaviour we will
focus in this study on the problems that any agent has to
face when using perspective distortion to infer the goal
direction from a snapshot. To that end we use real robots
to avoid the idealizations one necessarily has to accept
when simulating an agent and its environment. We limit
ourselves to mechanisms that are computationally inex-
pensive, both to afford robotic implementation and to
avoid overly complex explanations.

In the next section, we give a mathematical description
of the basic task, followed by the introduction of a new al-
gorithm (Section 3) that is able to cope with some of the
shortfalls of previous approaches. Section 4 describes our
implementation on a mobile robot and presents experi-
mental results. We conclude our study with a discussion
of the results and relate them to previous approaches
taken by researchers in biology and robotics.
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Figure 1: By displacing the sensor ring along the dashed
arrow, the landmarks L 4 and K4 are shifted to new po-
sitions Lp and Kpg relative to the sensor. The image re-
gion in the direction of displacement expands, while the
opposite region contracts. If the landmarks are isotrop-
ically distributed, then the vector sum of the disparities
always points towards the starting point.

2 Inferring the home direction from per-
spective distortion

To characterize the basic task mathematically, we start
by giving some definitions which will be used throughout
the paper. As an idealized model of an agent we choose
a mobile sensor ring measuring the surrounding light in-
tensity. If the allowed movements of the sensor ring are
restricted to two dimensions then a ring parallel to the
movement plane suffices in principle, to determine the
relevant motion parameters. The agent is able to record
a 360° view of the surrounding panorama as a snapshot.
The position of an image point on the sensor ring is de-
noted by the angle #. All points in the environment
giving rise to identifiable points in the image are called
landmarks. This should not be confused with the usual
notion of a landmark as a physical object. In our termi-
nology, a visible object may contain several landmarks.

Suppose we displace the sensor ring in direction « at
position A by a distance d to point B and change its
orientation by the angle ¢ (see Fig.2). As a consequence,
the image of landmark L at distance r is shifted from 6
to a new position 6 4+ ¢ (assuming a static environment).
From the triangle ALB in Fig.2 we obtain
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This relation can be used to compute the direction § =
a + 7 back to the starting position A from the change
d in the landmark position (the disparity), if r/d and ¢
are known.

Figure 2: Displacing a ring sensor from A to B in direc-
tion a (with respect to sensor’s initial orientation O4)
and rotating it by ¢ leads to a change J of the viewing
angle of a landmark L.

Before relation Eq. (1) can be applied for homing
tasks, two basic problems have to be solved:

1. In order to compute the disparity §, a correspondence
between image points in the snapshot and in the cur-
rent view must be established. Since the displace-
ment is the result of an arbitrary movement, we are
not allowed to assume that image points belonging to
the same landmark occur at similar locations in both
the snapshot and current view.

2. A visually navigating agent has no access to the ac-
tual distance r of the landmark at L. Therefore, this
lack of knowledge must be compensated by some ad-
ditional assumption about the distance distribution
of possible landmarks in the environment.

The computation of disparities requires techniques used
for optical flow analysis, or mechanisms for object recog-
nition that allow to identify regions in different images
as belonging to the same object. The problem can be
alleviated if the agent either knows its orientation with
respect to an external reference (Cartwright & Collett
1983, Wittmann 1995) or always keeps a constant orien-
tation (Hong et al. 1991, Rofer 1995).

In previous approaches, two basic assumptions have
been used to compensate for the lack of distance know/-
ledge:

Isotropic landmark distribution. If the surrounding
landmarks are distributed isotropically (i.e. frequency
and distance of landmarks does not depend on the view-
ing direction), one obtains the correct goal direction by
summing over all disparity vectors along the sensor ring,
since all disparity components orthogonal to direction of
the displacement cancel each other (see Figure 1).



Weak perspective. The weak perspective projection ap-
proach is based on the assumption that the projected
objects are sufficiently far away from the sensor, so that
the distance differences of the individual landmarks be-
longing to a single object become negligible.! The in-
dividual disparities of the landmarks can be measured
while the unknowns «, ¢ and r/d in Eq. (1) remain the
same all over the object. Thus, an object containing
at least three landmarks suffices to determine the home
direction. To use this approximation, the agent must
be able to segment image regions belonging to an ob-
ject from the background, and to identify the object in
different images.

In the following section, we will introduce an algorithm
based on an approximation which we call equal distance
assumption. The surrounding landmarks are assumed
to have approximately identical distances from the lo-
cation of the snapshot. Similar to the approximation
of an isotropic landmark distribution, a homing algo-
rithm based on this assumption does not need any object
recognition mechanisms and can rely on optical flow tech-
niques. Additionally, this approach provides constraints
for the computation of the disparity field which will be
used in our algorithm. As the equal distance assumption
18, in the strictest sense, unrealistic, we will show in Sec-
tion 3.2 that the effect of the resulting errors on homing
performance remain small.

3 Homing with parameterized disparity
fields

3.1 A matched filter based on the equal distance
assumplion

Before applying the equal distance assumption we will
convert Eq. (1) into a suitable form for the subsequent
analysis. Solving Eq. (1) for ¢, we have
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We assume a typical landmark distance R and denote
the deviation from it by r’ so that » = R+ r’. This leads
to

4 sin(f — )

_ R
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By setting e = /R, v = d/R and v = § — «a to simplify
the notation, we obtain from Eq. (3)
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INote that the second assumption of weak perspective is auto-
matically satisfied for a sensor ring: the object is always near the
optical axis of some sensors.

The cases v =0, e = —1 and vy = 0,7, v = 1 4+ € have to
be excluded which means that the agent is not allowed
to occupy the same position as a landmark while homing
or taking a snapshot.

We now apply the equal distance assumption by ne-
glecting the individual distance differences € of the sur-
rounding landmarks. The resulting expression
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describes the disparity field when all landmarks are lo-
cated at a distance R from the starting position. The
disparity field is completely determined by only three
parameters «, ¥ and v. This allows us to estimate the
real disparity field and the home direction using the fol-
lowing algorithm:

1. For all parameter values of a, 1 and v the current
view is distorted by shifting the image positions 6 of
the single pixels according to Eq. (5). The result of this
procedure are new images that would have been obtained
if the sensor was displaced in an environment where the
constant distance assumption was perfectly valid.

2. The generated images are compared to a snapshot
taken at the home position. To measure the degree of
match between both images we use the Euclidian dis-
tance between the grey values at each pixel. The best
match is produced by a disparity field which reconstructs
the home view as accurately as possible.

3. In a final step, the parameter value of a leading to
the best match is selected as an estimate f = a + 7 of
the home direction.?

Note that in order to determine Eq. (5) completely, at
least three landmarks must be visible. Otherwise, the
home direction can only be estimated if additional in-
formation sources such as compasses or odometers are
available. The parameterized disparity field d(6)|c.=o can
be interpreted as a matched filter in the sense that the
parameter set that reproduces best the actual disparity
field can be assumed to approximate the real one. Since
the direction of the displacement « is one of the param-
eters, the best matching disparity immediately gives the
goal direction. Similar motion templates for determining
egomotion parameters from given optical flow fields have
been described for the visual system of the blowfly Cal-
liphora (Krapp & Hengstenberg 1996), and theoretically
by Nelson & Aloimonos (1988).

Although the equal distance assumption is hardly ever
valid in 1ts strictest sense, the estimate of the disparity
field is quite robust as will be demonstrated in the next
section.

2The relative distance v obtained by this matching process is
generally not the mean relative distance of the surrounding land-
marks, but a weighted average according to the disparity caused
by each individual landmark.



3.2 FKrror due to the equal distance assumption

Let
E(e,v):=6d(e,v)—4(0,v) (6)

denote the error in the disparity § due to neglecting the
deviation of the landmark distance r’ from the averaged
distance R. We want to show that for each ¢ > —1, fixed
~, and any desired accuracy bound Ejy > 0, there exists
a vg such that v < vy implies |E(e,v)| < FEg. In other
words, even if the equal distance approximation does not
hold, we can reach any desired accuracy level, provided
that we are close enough to the goal.

For the proof, we use the Taylor expansion of F (cf.
Egs. (6), (5)) in ¢,
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where 0 < ¥ < 1. Clearly, the first term tends to 0 as v
tends to 0. If € > 0, then the second term can also easily
be seen to tend to 0: its denominator will not tend to
zero, while the denumerator always does. If ¢ < 0, we
need to take a closer look at the denominator: First note
that even though ¥ might depend on v, we know that for
all v,

14+0e>1+€¢>0. (8)

Thus we can choose vy > 0 such that for v < vy,

14 0e—vcosy >
> k>0 (9)

14+ e—vcosy

for some suitable k. Hence for v < vy the denominator
is bounded from below by x*, whereas the numerator
approaches 0, which completes the proof.

Therefore, for every snapshot containing at least three
landmarks, there exists a catchment area in which the
location of the snapshot can be approached arbitrarily
closely. In practise, the catchment areas tend to be
larger than one might expect from the equal distance
approximation, as there are several factors which effec-
tively select a ring—shaped area for the matching proce-
dure. First, the error induced by an infinitely distant
point is relatively small, compared to disparities gener-
ated by nearby landmarks. Second, very close points
will not have an effect as adverse as might be expected
from their large disparities, since commonly used obsta-
cle avoidance systems make them less likely to occur. In
addition, the vision system’s limited depth of field will
cause both very close and very distant landmarks to be
blurred and reduced in contrast, which decreases their
effect on the matching procedure. This serendipitous
bonus makes our approximation all the more suitable for
real world applications.

3.3  Limitation of accuracy by sensor noise

As we have shown in the previous section, the equal dis-
tance assumption does not influence the spatial accuracy
of the homing scheme. Therefore, the primary limiting
factor is the pixel and quantization noise of the sensor
ring. In the following, we will determine the influence of
noise on the spatial accuracy, namely the smallest achiev-
able relative distance from the goal Av.

We assume that the intensity distribution h(f) sam-
pled by the sensor ring is low-pass filtered in a subse-
quent processing stage so that the derivative of the in-
tensity distribution A’(f) is well defined for all sensor
coordinates f and spatial aliasing effects are eliminated.

The variance of the noise in the intensity distribution
is giVen by Ah?],oise = Osensor T+ A2/12, where Osensor is
the sensor noise and the second term results from the
quantization error (here, A is the step size of the quan-
tizer, cf. Oppenheim & Schafer 1989). As a consequence,
the maximally resolvable intensity change is 2Ah,, ;¢ ac-
cording to the usual reliability criterion for communica-
tion systems which is analogous to assuming that the
threshold signal to noise ratio is unity (Goldman 1953).

A small displacement of the sensor ring from the lo-
cation of the snapshot induces a small change A in the
position of the image features. The resulting change of
the detected intensity distribution at 8 is, to a first order
approximation,

Ah(0) = B (0) - AD. (10)

From (10), we find that the maximally resolvable image
displacement is

2

Ag == WAhnoise- (11)

From Eq. (5), we obtain the expression
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so that the maximal spatial accuracy is given by

Av = v(d+ Af) —v(d)
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This shows that for extreme noise levels, low contrast and
sensor positions very close to landmarks, Av may become
larger than the catchment area, so that in these cases the
described homing scheme is not applicable. Note, that
the above limitation is derived for only one landmark.
When more landmarks are visible, the spatial accuracy
becomes higher due to the effect of statistical averaging.



4 Results

4.1  Ezxperimental setup

Most experiments were conducted in an arena with di-
mensions 118 x 102 cm. Visual cues were provided by
model houses and landmarks surrounding the arena (see
Fig. 3). In these experiments, we used a modified Khep-
era miniature robot (Fig. 4) connected to an SGI Indy
workstation via a serial and video transmission cable.
Our scheme was also tested in a real office environment
on a six-wheeled platform with wireless modem and video
transmission.

The imaging system on the robot comprises a conical
mirror mounted above a small video camera which points
up to the center of the cone (Fig. 4). This configuration
allows for a 360° horizontal field of view extending from
10° below to 10° above the horizon. A similar imaging
technique was used by Chahl and Srinivasan (1996) and
Yagi, Nishizawa, & Yachida (1995). The video image was
sampled on four circles along the horizon with a resolu-
tion of 2.5° and averaged vertically to provide robustness
against inaccuracies in the imaging system and tilt of the
robot platform. In a subsequent processing stage, a spa-
tiotemporal Wiener lowpass filter (e.g. Goldman, 1953)
was applied to the resulting one-dimensional array. To
remove changes in the illumination, the average back-
ground component was subtracted and, in a final step,
the contrast of the array was maximized via histogram
equalization. The movement commands calculated from
this data were transmitted back to the robot using a
serial data link with a maximal transmission rate of 12
commands per second for the Khepera (5 for the wireless
modem).

The Khepera’s position was tracked with a colour cam-
era mounted above the arena, tuned to a red marker
attached to the robot. Position and image data were

Figure 3: Test arena with toy houses, used in the homing
experiments (see Sec. 4.1).

Figure 4: Khepera” robot with camera module and
custom made conical mirror, which permits sampling of
the environment over 360°, in a range of £10° about the
horizon.

recorded with a time stamp and synchronized offline.

4.2 Performance of the homing scheme

The viability of our approach was tested in an experi-
ment with the Khepera robot in the “toy house” arena.
During the homing runs, the robot computed the home
direction every 83 ms relative to the current driving di-
rection. The home vector was used to set the new driving
direction. For 20 different home positions, the robot was
displaced relative to each home position by distances in
the range of 5 to 25 cm in random directions. A trial
was counted as a success if the robot reached the home
position within a radius of 1 cm without colliding with
an obstacle or exceeding a search time limit of 30 sec-
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Figure 5: Success rate for 100 homing runs, with starting
distances between 5 and 25 cm.
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Figure 6: Home vector field for a central view in the arena (118 x 102 cm) shown in Fig. 3, with sample trajectories
of a homing Khepera robot. The catchment area is depicted in grey, and the home position is marked by a circle.

onds. The success rates in Fig. 5 show that the algo-
rithm performs robustly up to an average distance of
15 cm from the home position. For larger distances, the
start position was often outside the open space around
the home position, so that occlusions affected the per-
formance. Sample trajectories from the homing runs are
shown in Fig. 6. In the office environment, homing was
successful up to 2 m away from the home position.

With the help of the tracking device the size of the
catchment area can be visualized (Fig. 6) using the fol-
lowing procedure: During a test run, the robot covered
the whole arena with 10000 snapshots thus approximat-
ing the entire set of possible views (the view manifold)
of this environment. For a selected home view, we cal-
culated the corresponding home vector at all possible
positions which lead to the map in Fig. 6. A point is
considered part of the catchment area, if there is a path
along the goal vectors leading to the goal. As can be
seen from Fig. 6, the catchment area can cover the en-
tire open space around the goal position. If the goal is
placed nearer to an object, the catchment area decreases
in size only moderately, which allows the effective use of

the homing scheme in all areas of the arena where the
robot does not collide with objects.

To assess the directional accuracy of the computed
home vectors, we recorded 450 pairs of views during a
random walk and computed the respective home vectors
for each pair (Fig. 7). The pairs were required to be
connected by a direct line of sight, and no snapshots
were taken within 2 e¢m reach of the obstacles. To
evaluate the accuracy of our method, we calculated the
average homeward component for distances in the range
of 1 to 15 cm in 1 cm bins, each containing 30 samples.
This measure characterizes both the accuracy and the
angular dispersion of the computed home vectors and is
often applied in homing experiments (Batschelet, 1981).
As long as the homeward component stays significantly
above zero, the robot moves nearer to the goal; if it is
close to one, the robot moves directly homeward. The
decrease in accuracy for distances smaller than 2 cm is
due to sensor noise as predicted by Eq. (13). At dis-
tances larger than 15 cm the data base was too small,
because pairs with larger distances fulfilling the imposed
conditions occurred very rarely during the random walk,

~



due to the cluttered structure of the arena. Other ex-
periments indicate that the accuracy decreases rapidly
due to occlusions beyond this value. This should not
be considered a limitation of the homing scheme, but a
characteristic of the environment.

4.3 Improvements by independent parameter
estimation

The function over which the optimization in the three
parameters a, ¥ and v has to be performed, has multi-
ple local minima, thus standard gradient descent meth-
ods cannot be used. Since a global search is very time
consuming it is convenient if ¢ or v can be estimated
independently. A possible solution would be the use of
an external compass to estimate i, but it can also be
extracted from image data alone, as described below.

Spatial distance from image distance Due to the oc-
curence of multiple local minima, the Euclidean image
distance cannot be used to home by direct gradient de-
scent. Nevertheless, the image distance between snap-
shot and current view correlates well with the relative
distance v, as can be seen from Fig. 8. The map was
calculated from the view manifold data described in
Sec. 4.2. In fact, up to a certain distance, spatial dis-
tance may be inferred from measured image distance.
As the estimate of the other two parameters a and ¥
is very robust to variations in v (in particular, at large
distances, cf. Sec. 3.2), we use a linear approximation
for the relationship between spatial and image distance.
This speeds up the algorithm considerably, so that home
vectors can be computed in our C++ implementation
at a frame rate of 25 Hz on the SGI Indy workstation
(R4400 Processor at 100 MHz).

Orientation estimation Similarly, the change of orien-
tation ¢ may be estimated by shifting snapshot and cur-
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Figure 7: Average homeward component of computed
home vector.

Figure 8: Euclidean image distance map for the home
in Fig. 6. The displayed grey values correspond to the
minimum distance which can be obtained by rotating the
respective views. Darker areas represent smaller image
distances.

rent view until a minimal image distance is reached. Un-
fortunately, this only works well near the goal. Since
the algorithm does not tolerate large errors in the esti-
mate of 1, this method is not directly applicable in our
scheme. A different approach, however, which we have
successfully tested in other experiments, involves using
previously acquired information to speed up the estima-
tion of 9. In particular, restricting the search space for
¥ to the neighbourhood of previous estimates of 1 did
not decrease accuracy.

5 Discussion

Previous approaches to scene—based homing. In the fol-
lowing, we will relate our approach to previously pub-
lished approaches by briefly discussing a number of
scene—based homing schemes and pointing out some dif-
ferences to the present approach. In doing so, we will
mainly focus on the type of approximations and the
correspondence mechanisms utilized (summarized in Ta-
ble 1).

Most approaches use a 360° field of view, greatly re-
ducing computational cost: for limited fields of view,
invisible parts must be kept in some internal represen-
tation, whereas for an omnidirectional sensor, all non—
occluded landmarks are permanently visible. As Nel-
son & Aloimonos (1988) pointed out, there is an addi-
tional advantage: In a 360° field of view, the rotatory
and translatory part of the disparity field can easily be
separated, while in the case of limited fields of view, there
is no unique decomposition. Therefore, considerable ef-
fort has gone into technical implementations, including a
camera pointing at a spherical mirror (Hong et al. 1991),
and a rotating intensity sensor (Rofer 1995).



Author Approx- Correspon- Input Constant | Implemen-
imation dence orientation tation
Cartwright & Isotropic Region Binary, yes Computer
Collett 1983 landmark matching one-dim., simulation
distribution 360°.
Hong et al. Isotropic Feature Grey value, yes Mobile
1991 landmark matching one-dim., robot
distribution 360°.
Rofer 1995 Isotropic Kohonen Grey value, yes Mobile
landmark network one-dim., robot
distribution 360°.
Wittmann Isotropic Correlation Grey value, yes Computer
1995 landmark on resolution one-dim., simulation
distribution pyramid 360°.
Basri & Weak Linear com- Video no Computer
Rivli 1995 perspective bination of images simulation
model images
Franz et al. Equal Parameterized | Grey value, no Mobile
1997 distance disparity one-dim., robot
fields 360°.

Table 1: Overview of scene-based homing schemes (cf. Sec. 5)

Cartwright & Collett (1983) and Wittmann (1995)
proposed models for honey bee landmark navigation.
Both assume that the bee stores its orientation with re-
spect to an external compass reference provided by the
sun or the earth’s magnetic field. This allows the bee
to keep the orientation of snapshots constant, either by
“mental” counterrotation or appropriate body orienta-
tion. Similarly, the camera platforms of the robot used
by Hong et al. and Rofer do not rotate when the robot
changes direction, so that all views have constant orien-
tation. As pointed out in Sec. 4.3, this has the advantage
of greatly reducing computational cost. The schemes of
Cartwright & Collett and Wittmann are implemented in
idealized computer models, so they do not have to pro-
vide solutions on how to deal with noisy orientation esti-
mates. Since these errors may result in large deviations
in the estimation of the home direction, small rotatory
deviations are compensated for in the robotic implemen-
tations of Hong et al. and Rofer. However, the orien-
tation of the platforms is subject to cumulative errors,
thus their schemes may fail in large scale environments.

It should be noted that although the above approaches
differ in the way they establish correspondences between
views, they all rely on constant orientation and the ap-
proximation of isotropic landmark distribution. Apart
from the fact that the latter is rarely realized, the error in
the computed home direction due to this approximation
may be very large, even close to the goal (e.g., if all land-
marks were concentrated near K4 in Figure 1). Thus,
these schemes may converge very slowly in strongly non-

isotropic environments, and even fail for higher noise
levels. Cartwright & Collett included therefore an ad-
ditional feature in their scheme to reproduce the experi-
mental data: The vector sum for the computation of the
home direction contains not only the tangential dispar-
ity vectors but also radial vectors which act to lessen the
size discrepancy of the visible objects. This makes their
scheme less sensitive to non-isotropic landmark distribu-
tions (and even works if only one single object is visible),
but requires mechanisms for object recognition.

The scheme of Basri & Rivli (1995), unlike the above
approaches, operates with a limited field of view. It uses
images of objects with identifiable features, taken from
different view points, as model images. Under weak per-
spective conditions any other view of the object can be
generated by a linear combination of the model views.
The goal direction is computed from the transformation
coefficients of the current view and the snapshot. In ad-
dition to the mathematical discussion, Basri & Rivli val-
idate their method on real-world test images; however,
they do not give results obtained for simulated vehicles
or robots.

The present approach: parameterized disparity fields.
In this paper, we have proposed a novel approach to
scene—based homing, based on the equal distance as-
sumption described in Sec. 2. The accuracy with which
the algorithm can approach a goal was shown to be lim-
ited only by sensor noise, not by the approximation,
and that every snapshot is surrounded by a catchment



area. Robot experiments demonstrated the validity of
our method for real world applications and provided a
quantitative assessment of its performance.

As the computation of disparity fields is an ill-posed
problem, some additional assumption about the field had
to be included. Our scheme makes explicit use of the un-
derlying geometry of the task. Together with the equal
distance assumption, this yields a low—dimensional pa-
rameterization of the possible disparity fields. The low-
dimensionality leads to an optimization problem solvable
in real time. All disparity fields defined by the param-
eterization, in particular the result of the optimization,
are such that they can occur in real-world situations.
This, however, is not guaranteed for general optical flow
methods such as feature matching or correlation.

Clearly, our homing scheme is limited to the immedi-
ately accessible surroundings of a snapshot. Elsewhere,
we have described how to deal with navigation in large—
scale environments by combining several snapshots into
a graph-like structure (Schélkopf & Mallot 1995, Franz
et al. 1997).

Since this work was largely inspired by biology we want
to conclude with a few remarks concerning the biological
relevance of our scheme. The proposed algorithm could
be implemented with matched filters in very simple neu-
ral circuitry. As Krapp & Hengstenberg (1996) have re-
cently shown, flies use matched filters for complex stim-
uli such as generic optical flow fields. Moreover, we note
that in our approach, 3-D information is only present im-
plicitly, in the use of perspective distortion, and in the
geometrical parameterization of disparity fields. Previ-
ous studies have shown that a variety of visual tasks (e.g.
object recognition, see Biilthoff & Edelman, 1992) can
be accomplished by biological systems without using ex-
plicit 3-D representations. Although these observations
support our approach, we emphasize that it is not an
explicit model of animal behaviour. It rather aims at
understanding possible solutions to a general problem
which robots as well as animals have to solve.
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