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Abstract. This paper describes a purely visual navigation scheme based
on two elementary mechanisms (piloting and guidance) and a graph
structure combining individual navigation steps controlled by these mech-
anisms. In robot experiments in real environments, both mechanisms
have been tested, piloting in an open environment and guidance in a
maze with restricted movement opportunities. The results indicate that
navigation and path planning can be brought about with these simple
mechanisms. We argue that the graph of local views (snapshots) is a
general and biologically plausible means of representing space and inte-
grating the various mechanisms of map behaviour.

1 Introduction

In animal navigation, three basic mechanisms of spatial memory have been iden-

tified:

o Path integration or dead reackoning is the continuous update of the egocentric
coordinates of the starting position based on instantaneous displacement and
rotation data (see [8] for review). Odometry data are often taken from optic
flow but other modalities such as proprioception (e.g., counting steps) may be
involved as well. Since error accumulation is a problem, the use of global ori-
entation information (“compasses”, e.g., distant landmarks or the polarization
pattern of the skylight) is advantageous. Path integration involves some kind
of working memory in which only the current “home—vector” (coordinates of
starting point) is represented, not the entire path.

o “Piloting”: Approaching a place whose local position information matches a
stored “snapshot”. This mechanism requires long—term storage of the local po-
sition information, such as a view or snapshot visible at that point. From a
comparison of the stored view with the current view, an approach direction can
be derived. Moving in this direction will lead to a closer match between the two
views [1, 4].

o “Guidance”: Associations of recognized views (local position information) to
movements. Here, long term memory of the local position information (view) is
required as well. When recognized, it triggers an action, i.e. a movement or a
behavioural routine. The existence of such associations has been shown in bees
[3] and humans [7].

Using these basic mechanisms, different levels of complexity of spatial knowledge
and behaviour can be formulated. Concatenating individual steps of either pi-



loting or guidance results in routes. These routes will be stereotyped and could
be learnt in a reinforcement scheme. More biologically plausible, however, is
instrumental learning, i.e., the learning of associations of actions with their ex-
pected results. This can be done step by step without pursuing a particular
goal (latent learning). Instrumental learning entails an important extension of
the two view—based mechanisms in that the respective consequences of each
of a number of possible choices (either movements or snapshopts to home to)
are learnt. This offers the possibility of dealing with bifurcations and choosing
among alternative actions. Thus, the routes or chains of steps can be extended
to actual graphs which are a more complete representation of space, or cognitive
map [10, 12, 11, 5]. The overall behaviour is no longer stereotyped but can be
planned and adapted to different goals.

In the project reviewed in this paper, we have explored the mechanisms of
visual piloting and guidance with an autonomous robot and combined them
into a graph—type cognitive map. A neural network implementation has been
developed for the graph of views and movements while piloting has been imple-
mented by conventional algorithms. Experiments with the integrated exploration
and navigation system are presented in Sect. 5.

2 Piloting: Matching Current View to Stored Snapshot

Local position information is any sensory input occuring at a place. If a location
is not marked by salient features, it has to be defined by relational properties, e.g.
by an array of surrounding landmarks. The return direction after a displacement
can be inferred by comparing the current visual input to the stored snapshot:
image regions in the direction of the displacement are expanded while the image
in the goal direction is contracted. This requires a matching of the stored snap-
shot to the current view, i.e., a solution of the correspondence problem [1]. To
infer the exact return direction from the pattern of contraction and expansion,
some knowledge of the object distances is also required. In our approach, we
neglect the directional variation of object distance. Movement is generated in
the direction of maximal image contraction which is a reasonable approximation
of the ideal approach direction. In fact it can be shown mathematically that
the system will approach the goal with arbitrary accuracy, despite the error in-
troduced by the constant distance assumption [4]. Each stored snapshot has a
limited “catchment area” of points from which the approach works. The size of
these catchment areas depends on the local variation of the views.

The direction of maximal contraction is estimated by a set of matched filters
representing the expected “disparity fields” for a number of movement direc-
tions. From a population of these predefined disparity fields and their respective
degrees of match to the actual disparities the true displacement direction can be
determined.

We use a 360° imaging device consisting of a camera pointing upwards and
a conic mirror mounted on top of the camera (see Fig. 2 and [2]). The ring of
pixels imaging horizontal rays is called the horizontal ring. In all experiments
reported here, the image along this horizontal ring is used, with some prior
lowpass filtering. In this situation, both image and matched filters are one-
dimensional.



Fig. 1. Wiring diagram of the

;; N N neural network. (fi,...,fs):
fa o feature vector corre-
fa sponding to the current view.
fs— my,...,Mg: movement units.

U1y, UN: view units. Input

weights 0, (fj — wvn) sub-
serve view recognition. Map
layer weights an; (vi — vn)
represent connections between
views. They can be modified
by facilitating weights B n;
indicating that view v,, can be
reached from v; by performing
movement myg.

my
mo

mg

3 Guidances: Associations of Views to Movements

A cognitive map is a neural mechanism supporting navigation and orientation
tasks much as a real map of the environment. In [12], we presented a mecha-
nism for the learning of a cognitive map of a maze from the sequence of local
views encountered when exploring the maze. In this approach, the topological
structure of a maze is represented as a graph where the places are the nodes and
the directed corridors are the edges. The exploration sequence of encountered
views corresponds to the sequence of directed corridors travelled along the way
through the maze; it can be conceived of as a walk on the view graph, a graph
whose nodes represent the encountered views and whose directed edges, labelled
by movements, represent possible view sequences. Assuming that each corridor
corresponds to exactly one view and all views are distinguishable, one can prove
that the view graph contains all the information required to reconstruct the
place graph.

A neural network implementation of the view—graph algorithm (Fig. 1) ac-
quires information concerning three problems:
Identification of views. After learning, perception of a view will be represented
by activity in the associated map unit: the unit whose input weights g,; are
most closely tuned to the presented view (the “winner” unit).
Learning the maze topology. This is accomplished by developing weights «,; con-
necting winner units of subsequent time steps within the map layer.
Learning movements. To support path planning, the network must store knowl-
edge about which movement decisions are necessary to generate certain view
sequences. This is done by developing modulatory connections from movement
units to map layer connections. During path planning, possible motion decisions
are presented to the network one after the other. For each decision, the network
determines the unit representing the respective neighbouring view, which is eval-
uated in terms of the time it takes for an activation of this unit to reach the goal
view unit.



Fig. 2. Left Arena for robot experiments using toy houses. Right Close—up

of modified Khepera® robot with a vertically mounted camera facing a conic
mirror.

4 Exploration: Learning View-Graphs in Open
Environments

In discretized environments like mazes, there is a canonical set of views to store:
since no movement decisions need to be taken while traversing corridors, the
views necessary to support path planning are solely those at junctions. As open
environments do not impose an external structure on the view graph, we have
to select a set of representative views (referred to as snapshots).

The set of snapshots has to satisfy two criteria: First, the views should be
distinguishable. In purely graph—based maps, stipulating that the graph nodes be
distinguishable is the only way to guarantee that specific views can be navigated
to. Second, the spatial distance of neighbouring views should be small enough
to allow reliable navigation between them.

In our system for exploring open environments [5], the nodes of the view
graph are identified with one—dimensional 360° snapshots of the surrounding
panorama (see Sect. 2). We use a simple threshold classifier for selecting snap-
shots. Whenever the pixel-wise cross—correlation between current view and stored
snapshots drops below a threshold, the system takes a new snapshot and links it
to the last one. The threshold is chosen such that the nodes remain in the catch-
ment areas of their neighbours. In this way, the system can navigate between
views using the visual piloting procedure described in Sect. 2.

This route learning procedure has no means of forming new links to previ-
ously visited views, i.e. the resulting graphs would be mere chains. Nontrivial
graphs can be learnt by using the same threshold classifier to detect places where
the recorded chains overlap: If the cross—correlation between current view and
another node exceeds the threshold, the system decides to approach this node
by piloting (link verification). If the approach is successful, a newly learnt link
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Fig. 3. Two view graphs in a 118 x 102 cm size arena with different start posi-
tions S. Locations of snapshots are marked by circles (o), the lines show recorded
links between them. The sample trajectory marked by diamonds (¢) in G started
at node 1. Node L is a possible linking place between GG; and G. Shaded areas
are obstacles.

is included into the graph. In cases where the system gets lost, a new graph is
initiated, which will typically get connected to the old one in due course.

5 Robot experiments

The experiments were conducted both in a hexagonal maze and in an arena

cluttered with model houses, using a modified Khepera® platform. In the maze
experiments, visual cues were provided by one—dimensional patterns on the floor,
read with two infrared sensors during traversing the corridors (“two-pixel vi-
sion”). In the open arena, no artificial landmarks were used; the imaging system
on the robot comprised a conical mirror mounted above a small video camera
pointing up to the center of the cone as described above (Fig. 2; [2]).

The maze navigation system was tested in different behavioural modes. In ex-
ploration mode, the robot was driving through the maze (about 100-200 ran-
domly selected movement decisions) using its obstacle avoidance to get around.
After the network had been trained on these movements and views, it was tested
whether maze views and topology are correctly encoded in the network connec-
tivity graph by measuring combinatorial distances of winner units of subsequent
time steps. The measured “neighbourhood preservation rates” (the map qual-
ity criterion used by [12]) were close to 100%, showing that after learning, the
robot “knew” its position in the maze. The network generates ezpectations about
which views are likely to be seen next, given the previous view and the movement
carried out. Once the map has been learnt, this makes the system rather robust
against noise. In navigation mode, the robot used the information stored in
the neural network to find a particular view (the “goal” view) from various start-
ing positions. This goal view may be any view in the maze, without additional
learning required. In our small experimental mazes, the robot usually found the
shortest way to the goal view. This even works “in the dark”, without any view
input (see [12, 6]) mimicing a path—integration mechanism (as the one suggested

by [9]).



Fig. 3 shows two examples of view graphs GGy and G2 in an open environment.
Since the system only records snapshots which are sufficiently distinguishable,
the number of snapshots is limited. As a consequence, systems like ours that
use only topological information during exploration are necessarily confined to
a subregion of the arena, where the visual information remains unambiguous. In
order to cover the entire arena, local graphs such as G; and G2 in Fig. 3 can
be combined. Common nodes between subgraphs have to be marked as linking
places to allow transitions between them. In our example, node L is common
both to G; and G2 and could be used to switch from one subgraph to the other.

Once the graph has been learnt, one can generate a path to a goal by stan-
dard graph search algorithms, and then sequentially navigate along this path
by piloting. The usefulness of the view graph for path planning is demonstrated
by the sample trajectory in G;. The robot traverses a chain of 10 nodes, thus
connecting regions which have no visual overlap.

In future work, we plan to integrate all three basic mechanisms of navigation
into a joint, graph—based architecture.
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