Can fly tangential neurons be used to estimate
self-motion?
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Abstract

The so-called tangential neurons in the fly brain are sensitive to the typical optic flow patterns
generated during self-motion. This suggests a possible involvement in the self-motion estimation
process. In this study, we examine whether a simplified matched filter model of these neurons
can be used to estimate self-motion from the optic flow. We present a theory for the construction
of an optimal matched filter incorporating both the noise properties of the motion signal, and
prior knowledge about the distance distribution of the environment. Tests on a mobile robot
demonstrate that the matched filter approach works for real time camera input and the noisy
motion fields computed by Reichardt motion detectors.

1 Introduction

Self-motion induces characteristic patterns
of optic flow in a visual system. These pat-
terns contain useful information about the
current rotation and translation. Recent re-
sults from neurobiology provide some clues
on how a biological system extracts this in-
formation from the optic flow. Krapp et
al. (1998) investigated the receptive field or-
ganization of a particular class of the so-
called tangential neurons (VS-neurons) in
the blowfly Calliphora vicina. The local mo-
tion sensitivities and preferred motion direc-
tions of these neurons show a striking sim-
ilarity to certain self-motion-induced flow
fields (Fig. 1). Therefore, it has been ar-
gued that the tangential neurons might be
involved in the extraction of self-motion pa-
rameters from the optic flow.

In this paper, we examine whether a sim-
plified matched filter model of a tangential
neuron can be used to estimate the self-
motion of a mobile robot. We derive an op-
timal matched filter for self-motion estima-
tion from a least square principle minimizing
the variance in the filter output. The ap-
proach was originally developed to explain
the observed response fields of the tangen-
tial neurons (Franz et al. 1998a). As an il-
lustrative example, we test our theory on
a mobile robot in a typical indoor environ-

ment. The experiments demonstrate that
matched filters are able to extract transla-
tion and rotation velocity from optic flow
under real time conditions.

2 Matched filters for optic
flow patterns

2.1 A matched filter model of a tangential
neuron

The local response characteristic of a tan-
gential neuron can be modelled quite closely
as the projection of the flow vector p; onto
a unit vector u; pointing along the local
preferred direction (Krapp & Hengstenberg,
1997). Assuming a linear integration over
the receptive field, the excitation e of a tan-
gential neuron in response to a motion field
can be described by the simplified model
(cf. Fig. 2)

e= sz’(ui “Pi + 1), (1)

where - denotes the dot product. The lo-
cal flow measurements are taken at dis-
crete locations with index ¢ and projected
onto a template of local preferred directions
(LPDs). The local weight w; denotes the
relative local motion sensitivity (LMS), and
n; the noise in the locally measured motion
signal. We assume the noise to be additive
and isotropic.
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Figure 1: Mercator map of the response field
of the neuron VS7. The orientation of each ar-
row gives the local preferred direction (LPD),
and its length denotes the relative local motion
sensitivity (LMS). VS7 responds maximally to
rotation around an axis at an azimuth of about
30° and an elevation of about —15° (after Krapp
et al., 1998).

What are the filtering properties of such
a processing element? The model produces
its maximal output when the flow field is
parallel to the LPD template defined by the
unit vector field, but also reacts to other
flow fields. Similar to the matched filters
in the image processing literature (Rosen-
feld & Kak, 1982), the signal-to-noise ratio
of the output is maximized when the stim-
ulus field coincides with the LPD template.
This is obvious in Eq. (1), since in this case
the dot product is maximal in relation to
the local noise signal.

2.2 Filters for self-motion-induced flow
fields

The flow fields generated by a particular
type of self-motion depend on the layout of
the vision system and of the environment.
Here, we consider an agent with a passive
vision system that measures local flow vec-
tors at points arranged on the unit sphere.
A specific viewing direction (with index 4)
is described by a unit vector d;. When the
agent translates with T while rotating with
R about an axis through the origin, the self-
motion-induced image flow p; at d; is given
by (Koenderink & van Doorn, 1987)

(T —(T-di)ds)

pi = D, —-Rxd;, (2

where D; is the distance between the origin
and the object seen in direction d;.

Eq. (2) shows that the local flow direc-
tions during either pure rotation or pure

noisy projection onto local linear
optic flow unit vector field  weights integration

Figure 2: Matched filter model: The optic flow
and the local noise signal are projected onto a
unit vector field. The weighted projections are
linearly integrated to give the filter output.

translation do not depend on of the object
distances or on the magnitude of R or T.
This allows us to construct a matched filter
according to our model that is tuned to the
class of flow fields defined by a particular
rotation or translation axis, which we refer
to as the filter axis. To that end, the LPD
template has to be parallel to the flow field
class we want to detect. If we are interested
in a rotatory flow field around an axis a, the
corresponding unit vector field is given by
R R x di a X dz

U TTRxd - sme; O

with ©; being the angle between viewing di-
rection d; and the filter axis a. Analogously,
the LPD template for a translation along the
axis a is

T _ dz X a X dz

4
sin @z ( )

The filter signal is a linear function of the
self-motion parameters R and T that can be
written as the scalar product

e=R-CE_T-CT(Dy) (5)

with the vectors CE = Y. wu; x d;,
C?(D;) = ¥, w;u;/D; and u; being either
uf or u}. Thus, the filter output is propor-
tional to the self-motion component along
the filter axis, but also, to a lesser degree,
to self-motion along other axes. Following
Koenderink & van Doorn (1987), we call
these components the apparent self-motion
around the filter axis. Even when the self-
motion parameters stay exactly the same,
the filter output will vary between different
trials. Apart from the noise in the motion
signal, this is due to the varying distance
distribution of the current scene.



2.8 Estimating self-motion using matched
filters

Eq. (5) shows that the absolute self-motion
parameters cannot be recovered from the
flow field alone, since the filter response de-
pends on the unknown object distances D;.
One possibility to deal with this problem
is to use prior knowledge about typical dis-
tances in the environment, e.g., by replacing
the unkown term 1/D; by its mean value
< 1/D; >. The summation over a sufficient
number of local estimates will reduce the ef-
fects of individual distance deviations. In
this case, the matched filter signal will be
relatively independent from the particular
layout of the scene as long as its statistical
properties remain the same.

Consider an arrangement of three rota-
tory and three translatory filters tuned to
different axes. The vector e containing the
six filter outputs can be computed by the
matrix product (cf. Eq. (5))

e= : : T (6)
clt -ct

If we replace 1/D; by the mean value <
1/D; >, the vectors C become constants
and can be computed in advance. The ma-
trix can be inverted provided that the vec-
tors belonging to the different filters are lin-
early independent (which is the case in our
example). Thus, the self-motion parameters
can be recovered from the filter signals e
as long as the distance statistics follow the
prior assumptions. This means that a suit-
able arrangement of matched filters allows
us to remove all apparent components from
the filter output by a linear combination of
the other filter signals, with the exception of
the error introduced by noise and distance
deviations from the mean.

3 Optimal Matched Filters

3.1 Optimal weights for self-motion
estimation

The previous section has shown that a suit-
able arrangement of matched filters allows
for removing all apparent components from
the filter output, up to an error compo-
nent due to noise and distance deviations.
In this section, we derive a weight set that
minimizes the error component in the filter

output. The weights are chosen such that
flow measurements with a high noise con-
tent and strong distance variability receive
less weight.

In our model in Eq. (1), all the different
noise sources are combined into a common
additive noise component n; with standard
deviation An; and zero mean. In addition to
noise, a second error component is caused by
the scattering of the object distances around
their average value D; with standard devi-
ation AD;, which results in erroneous in-
terpretations of the underlying self-motion
parameters. In order to facilitate the math-
ematical analysis, we have to assume that
the distance variations at different points in
the visual field are statistically independent.
This would be ideally true in an environ-
ment consisting of small point-like objects.

Based on these assumptions, the mean
square error E? in the filter signal can be
approximated by the formula

T? > AD?
DI (7< ‘5 ’+An§) ™)

with < T? > being the average square pro-
jection of the translation vector on the local
unit vector u;.

In order to find a weight set minimizing
the mean square error in Eq. (7), we have to
impose further constraints. Here, we stipu-
late that the average filter signal (after re-
moving the apparent components) should be
equal to the self-motion component along its
filter axis. In the case of a rotatory filter,
this leads to the constraint ), w; sin ©; = 1.
The optimal weight set can be found by solv-
ing the Euler-Lagrange equation minimizing
Eq. (7) under this constraint. This leads to
a simple analytic expression for the optimal
weight set wf of a rotatory filter

R NR sin G)z

YT CT2 > AD?/DY + An?

(8)

with a suitable normalization factor Ng
such that ), w;sin©; = 1.

In an analogous procedure, we obtain the
optimal weight set w] for translation filters

r _ Nr<1/D;>sin0®;
' <T?>AD?/Df+ An?’

w

)

As can be seen from Eqns. (8) and (9), the
optimal solution assigns the weights accord-
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Figure 3: Average distances from the origin in
the visual field (N = 26). Darker areas repre-
sent larger distances.
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Figure 4: Distance standard deviation in the
visual field (N = 26). Darker areas represent
stronger deviations.

ing to the local variance of the corrupt-
ing factors noise and distance variability.
Eqns. (8) and (9) both require prior knowl-
edge about translation and distance statis-
tics. In Sect. 4.1, we will show an example
of these statistics obtained in an office envi-
ronment.

4 Experiments

4.1 Distance statistics of office
environments

The least square principle introduced above
assigns a weight to each region of the vi-
sual field according to the reliability of the
derived self-motion estimates. In our first
experiment, we want to find out which vi-
sual region is especially suited for estimat-
ing self-motion of a mobile robot in an office
environment.

The distance statistics were recorded us-
ing a laser scanner. The 26 measurement
points were chosen along typical trajecto-
ries of a robot while wandering around and
avoiding obstacles in an office environment.
The recorded distance statistics therefore re-
flect properties both of the environment and
of the specific movement patterns of the
robot. Distance means and standard devia-
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Figure 5: Optimal matched filters for office en-
vironments. The orientation of the arrows rep-
resents the local preferred direction, the abso-
lute values of the vectors the local weights. The
depicted region of the visual field extends from
—15° to 180° azimuth and from —75° to 75°
elevation. The filters are tuned to a. forward
translation, and b. to rotations about the verti-
cal axis.

tions are depicted in Fig. 3 and Fig. 4.

The distance statistics show a pronounced
anisotropy. This has three main reasons:
1. Since the robot tries to turn away from
the obstacles, the free space in front and be-
hind the robot tends to be larger than on its
sides (cf. Fig. 3).
2. The camera on the robot usually moves
at a fixed height above ground on a flat sur-
face. As a consequence, distance variation
is particularly small at very low elevations
(cf. Fig. 4).
3. The office environment also contains cor-
ridors. When the robot follows the corridor
while avoiding obstacles, distance variations
in the frontal region of the visual field are
very large (cf. Fig. 4).
These anisotropies can be utilized in a robot
vision system by preferably looking into di-
rections with smaller relative distance vari-
abilities.

4.2  Matched filters

The optimal filters for the two degrees of
freedom of the robot (forward translation
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Figure 6: Translation estimates for different
translation speeds (N=100). The solid line de-
notes estimates while keeping a straight course,
the dashdot line estimates while simultaneously
rotating at an angular velocity of 9°/s.

and yaw rotation) for homogeneous image
noise An; = 35% in the office environment
are shown in Fig. 5. The self-motion es-
timates are computed by reducing Eq. (6)
to the two relevant dimensions. Both filters
have in common that image regions near the
filter axis receive less weight. In these re-
gions, the self-motions to which the filters
are tuned generate only small flow vectors
which are easily corrupted by noise. Equa-
tion (9) predicts that a translation filter
will preferably sample in image regions with
smaller distance variations. In our mea-
surements, this is mainly the case at the
ground around the robot (cf. Fig. 4). The
rotation filter weights image regions with
larger distances higher, since distance vari-
ations at large distances have a smaller ef-
fect in Eq. (8). In our example, distances
are largest in front and behind the robot so
that the rotation filter assigns the highest
weights to these regions (cf. Figs. 3).

4.8 Robot experiments

We use a modified Khepera miniature robot
equipped with an omnidirectional vision sys-
tem that allows for a 360° horizontal field
of view extending from 10° below to 10°
above the horizon. The experiments were
conducted in an arena (118 x 102 cm) with
model houses as visual cues. The omnidi-
rectional camera image is sampled at 3 x 78
image positions. The motion field is mea-
sured using an array of Reichardt motion
detectors. The resulting motion fields are
very noisy and typically allow to discern 3-5
local velocities. More details about the ex-
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Figure 7: Rotation estimates for different angu-
lar velocities (N=100). The solid line denotes
estimates while rotating on the spot, the dash-
dot line estimates while simultaneously trans-
lating at a speed of 24 mm/s.

perimental setup can be found in Franz et
al. (1998b).

The signal of the translatory filter was
measured for 9 translation speeds ranging
from -32 to 32 mm/s. During 10 different
trajectories, 10 estimates were recorded for
each translation speed. The rotation filter
was tested while the robot rotated at 11
angular velocities ranging from —90°/s to
90°/s. Again, 10 estimates for each angular
velocity were recorded at 10 different loca-
tions.

The results are shown in Figs. 6 and 7.
Both translation and rotation estimates are
linear with increasing translatory and an-
gular velocity until the saturation level of
the motion detectors is reached. The aver-
age signal-to-noise ratio of the rotation es-
timates is smaller than that of the transla-
tion estimates. This is mainly due to the
fact that the extent of the robot’s visual
field is more favourable to rotation estima-
tion (cf. Sect. 4.1). In spite of the discussed
problems, the presented matched filters are
able to discriminate between 8-9 translation
speeds and 11-12 angular velocities. The en-
tire image processing runs at 25 Hz on a
standard PC which makes the matched fil-
ters especially suitable for tasks that require
fast self-motion estimates from visual input.

5 Discussion

In this paper, we presented a theory for
the construction of optimal matched filters
for estimating self-motion from optic flow.
We derived analytical expressions for the
weights from a least square principle which



minimizes the variance of the filter output.
In contrast to previous approaches, prior
knowledge about distance and translation
statistics is incorporated into the derivation
of the weights. To this end we recorded the
distance statistics of a typical office envi-
ronment with the help of a laser scanner.
We tested the quality of the self-motion es-
timates generated by the matched filters on
a mobile robot. The experiments demon-
strated that the approach works reliably in
spite of the extremely noisy motion fields
computed by Reichardt motion detectors.

Elementary motion detectors. Our
matched filters receive their input from cor-
relation type EMDs which can be easily
implemented in a fast computer algorithm.
However, the signals of EMDs are not rep-
resenting the true image velocity since their
output strongly depends on the input pat-
tern. Moreover, our EMDs are very noisy
and have only a small dynamic range. All of
these disadvantages could be reduced by us-
ing a more sophisticated flow algorithm, but
this usually requires more computational
power.

Improving the matched filter algorithm.
As presented here, our approach needs dis-
tance statistics to compute the optimal fil-
ters which are hard to obtain in most en-
vironments. However, the same results can
be achieved without using explicit distance
measurements. Instead of indirectly esti-
mating the variability < T? > AD?/D}
of the translatory flow in Eqns. (8) and (9)
from the distance statistics, one can also di-
rectly measure the variability of the transla-
tory component during a long straight tra-
jectory. The distance-induced variability
can be inferred from this measurement by
subtracting the noise-induced variance.

Conclusion. The present approach was
originally developed to explain the observed
response fields of the tangential neurons
in the blowfly (Franz et al., 1998a). Our
study demonstrates that a simplified model
of these neurons can be used to estimate
self-motion. This suggests a similar func-
tional role of the tangential neurons in the
fly brain. Moreover, the minimalistic solu-
tions used by the insect’s brain can be ap-
plied in technical systems. The computa-
tional simplicity allows for a real time im-
plementation running at 25 Hz which makes

the matched filter approach an attractive
option for robot applications.
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