A robot system for biomimetic navigation - from snapshots to metric

embeddings of view graphs

Matthias O. Franz!
Wolfgang Hiibner?

Wolfgang Stiirzl?

Hanspeter A. Mallot?

IMPI fiir biologische Kybernetik, Spemannstraie 38, D-72076 Tiibingen, Germany
2Universitit Tiibingen, Kognitive Neurowissenschaften, D-72076 Tiibingen, Germany
e-mail: Matthias.Franz@tuebingen.mpg.de;
wolfgang.stuerzl; wolfgang.huebner; hanspeter.mallot@uni-tuebingen.de

Abstract

Complex navigation behaviour (way-finding) in-
volves recognizing several places and encoding a
spatial relationship between them. Way-finding
skills can be classified into a hierarchy according
to the complexity of the tasks that can be per-
formed [5]. The most basic form of way-finding
is route navigation, followed by topological navi-
gation where several routes are integrated into a
graph-like representation. The highest level, sur-
vey navigation, is reached when this graph can be
embedded into a common reference frame.

In this paper, we present the building blocks for
a biomimetic robot navigation system that en-
compasses all levels of this hierarchy. As local
navigation method, we use scene-based homing.
In this scheme, a goal location is characterized
either by a panoramic snapshot of the light inten-
sities as seen from the place, or by a record of the
distances to the surrounding objects. The goal
is found by moving in the direction that mini-
mizes the discrepancy between the recorded in-
tensities or distances and the current sensory in-
put. For learning routes, the robot selects distinct
views during exploration that are close enough
to be reached by snapshot-based homing. When
it encounters already visited places during route
learning, it connects the routes and thus forms
a topological representation of its environment
termed view graph. The final stage, survey navi-
gation, is achieved by a graph embedding proce-
dure which complements the topologic informa-
tion of the view graph with odometric position
estimates. Calculation of the graph embedding is
done with a modified multidimensional scaling al-
gorithm which makes use of distances and angles
between nodes.

1 Introduction

Navigation behaviour in animals can be conveniently cat-
egorized into a hierarchy [5]. The layers of the hierarchy
correspond to increasing complexity levels of the navi-
gation tasks that can be performed by the animal. A
major distinction in this hierarchy is that of local naviga-
tion and way-finding: Local navigation behaviours such
as aiming, guidance, path integration etc. are used to
find a single goal by using only currently available sen-
sory information, without the need of representing any
objects or places outside the current sensory horizon [17].
It requires the recognition of only one location, namely
the goal. Way-finding involves the recognition of sev-
eral places, and the representation of relations between
places which may be outside the current range of per-
ception [14]. It relies on local navigation skills to move
from one place to another, but it allows the animal to
find places that could not be found by local navigation
alone. Way-finding behaviours can be categorized into
three subsequent levels: recognition-triggered response,
topological navigation and survey navigation.
Recognition-triggered responses connect two loca-
tions by a local navigation method, i.e., an association
between a sensory pattern defining the start location and
a motor action. In this context, a location is defined as
a certain sensory situation in which the same local nav-
igation method is selected. The recognition of the start-
ing location triggers the activation of a local navigation
method leading to the goal. There is no planning of a
sequence of subsequent movements, only the selection of
the very next action. Thus, the animal responds in an
inflexible manner to the current situation.

Several recognition-triggered responses can be con-
catenated to routes. Routes are sequences of recognition-
triggered responses, in which the goal of one step is the
start of the next. The local navigation method can be
different in each step according to the local environment.
A route may connect locations that cannot be reached
by local navigation alone. Still there is no planning in-

volved, as knowledge is limited to the next action to
perform. If one route segment is blocked, e.g. by an ob-
stacle, the animal has to resort to a search strategy until
it reaches a known place again.

Topological navigation. An animal using recognition-
triggered responses is confined to using always the same
sequences of locations. Routes are generated indepen-
dently of each other and each goal needs its own route.
Navigation is more adaptive if the spatial representa-
tion is goal-independent, i.e. if the same representation
can be used for multiple goals. To this end, the animal
must have the basic competence of detecting whether
two routes pass through the same place. Two possibly
different sensory configurations associated with the dif-
ferent routes leading through the same place have to be
merged by route integration. A collection of integrated
routes thus becomes a topological representation of the
environment. This can be expressed mathematically as
a graph, where vertices represent places and edges repre-
sent a local navigation method connecting two vertices.

Any vertex can become the start or the goal of a route,
so that, in the case of obstacles, alternative intersecting
routes may be found. The fact that alternative routes
may lead to one goal requires planning abilities which
generate routes from the graph. Planning together with
route integration are the capabilities required for topo-
logical navigation. The resulting routes are concatena-
tions of sub-sequences from already visited routes. As a
consequence, an animal relying on topological navigation
cannot generate novel routes over unvisited terrain.

Survey navigation. Whereas for topological naviga-
tion different routes have to be integrated locally, survey
navigation requires the embedding of all known places
and of their spatial relations into a common frame of ref-
erence. In this process, the spatial representation must
be manipulated and accessible as a whole, so that the
spatial relation between any two of the represented places
can be inferred. In contrast, topological navigation needs
only the spatial relations between connected places. An
animal using survey navigation is able to find novel paths
over unknown terrain, since the embedding of the current
location into the common frame of reference allows the
animal to infer its spatial relation to the known places.
Examples include finding of shortcuts in unknown terrain
between unconnected routes, or detours over unknown
terrain around obstacles.

Biomimetic navigation. Generally, each level of the
navigation hierarchy requires new skills on top of the
lower level skills. This could also indicate the direction
taken during evolution, since new behavioural capabili-
ties are usually built on pre-existing simpler mechanisms.
A distinctive feature of a biomimetic robot way-finding
system is, therefore, the use of a hierarchy of compe-
tences and their underlying mechanisms that should re-
flect an “evolutionary scaling” as discussed in [11]. The

f=29.5mm

3 Field

CCDArrayf

Figure 1: a: Khepera with panoramic stereo camera on
top (diameter =~ 5cm, height &~ 13c¢m). b: Schematic
diagram of the bipartite mirror for an axial plane (not
to scale). The imaging can be considered as “looking”
through two vertically separated points (A, B) which are
mirror images of the nodal point of the camera (F). The
inset shows the resulting panoramic stereo image: The
inner filled circle (light grey) depicts the part imaged
through the lower cone; the outer part (dark grey) is
imaged through the upper cone.

-

Camera Image

approach of technical robotics to navigation is most rem-
iniscent to survey navigation since spatial knowledge is
represented in a common global map. This contrasts
with the above considerations in which survey naviga-
tion is the very last stage of the evolutionary develop-
ment. Biomimetic approaches are therefore constructed
in a bottom-up manner: Higher navigation abilities are
used on top of simple, but reliable mechanisms. Some-
times these simpler mechanisms turn out to be sufficient
for a given task, so that the higher levels need not to be
implemented.

Several biomimetic navigation systems for recognition-
triggered responses and topological navigation exist in
the literature (see [5], for an overview). The final step
to survey navigation still awaits its robotic implementa-
tion. In the following, we present the building blocks
for such a robotic survey navigation system that en-
compasses all three levels of way-finding. Route and
topological navigation are already implemented on a mo-
bile robot, survey navigation works so far only in sim-
ulations. All experiments were done using a Khepera
miniature robot in a toy house arena of approximately
1m? size. As local navigation method, we use a scene-
based homing procedure (Sect. 2). The implementation
and algorithms for the subsequent levels of recognition-
triggered response, topological and survey navigation are
described in Sects. 3, 4 and 5. We conclude in Sect. 6 by
discussing the results obtained so far.

2 Scene-based homing

Bees or ants are able to use visual guidance (scene-based
homing) as they find a location which is only defined by

its spatial relationship an array of locally visible land-
marks (for review, see [3]). The experimental evidence
suggests that these insects store a relatively unprocessed
snapshot of the surrounding panorama as seen from the
goal. Cartwright & Collett [1] developed a computa-
tional model that allowed to find the goal by matching
the snapshot with the current view. Computer simula-
tions showed that the model could indeed account for the
observed search behaviour of honeybees.

This simple form of visual guidance has inspired sev-
eral robot implementations since no complex scene rep-
resentations have to be handled to find an inconspicuous
goal (overview in [5]). As robots usually move in the
open space between obstacles, scene-based homing is es-
pecially suitable for robot navigation. Our own approach
[7] used unprocessed panoramic images of the light inten-
sities seen at the horizon. Under constant lighting con-
ditions, our robot showed robust homing performance.
However, when lighting conditions changed completely
between taking the snapshot and homing (as, e.g., from
sunlight to artificial illumination), the performance broke
down [16]. This suggested a natural extension of the orig-
inal scheme: Instead of using unprocessed grey values,
one could use a “snapshot” of the distances to the sur-
rounding objects at the goal position since the distance
distribution in a scene is invariant under illumination
changes. There is also strong evidence that rodents, see
e.g. [2], [4], and also humans, e.g. [8], use memorized
geometric cues to return to already visited places.

The resulting homing algorithm used inverse distances
(disparities) to the surrounding objects as snapshots for
computational reasons (cf. Sect. 2.1). It showed robust
performance with respect to changes in the lighting con-
ditions. However, the area around the goal from which
the goal can be found, i.e., the catchment area of the
goal, was slightly smaller than in the original, grey-value
based scheme [16]. Homing accuracy depends mainly on
the noise properties of the imaging device, since a dis-
placement can only be detected if it generates sufficient
change in the image. In our experimental setup, this
was usually the case at distances from the goal in the
range of 1 to 3 c¢cm, depending on the distances of the
surrounding landmarks. The size of the catchment area
for a single snapshot is mainly determined by the layout
of the environment. In our toy house arena, maximum
homing distances of 45 cm were achieved. The success
rate was 95 % for homing distances smaller than 15 cm,
and dropped to 50 % in the range of 20 to 25 cm. In
the remainder of this section, we describe the disparity-
based homing scheme in detail. Both homing schemes,
view-based and disparity-based, are used as local naviga-
tion method in the way-finding system described in the
subsequent sections.

[d

Figure 2: a: Raw stereo image. Images of the toy house
environment can be seen in the lower right part (1). In
the marked sector element (2), a horizontal line on the
arena wall is imaged twice (arrows). b: Grey values cor-
responding to the sector element in a. Linear search for
maximum correlation (error function plotted in c¢) be-
tween the inner and outer part yields the disparity. The
hatched parts are excluded because of low horizontal res-
olution in the image center (left) and because of imag-
ing distortions at the transition area of the two different
slopes of the mirror (middle).

2.1 Disparity signatures of places

In order to acquire geometric information of the robot’s
current place we have built a panoramic stereo sensor.
Mounted on top of a Khepera miniature robot, a CCD-
camera is directed vertically towards a bipartite conic
mirror (see Fig. 1la). It consists of two conical parts
with slightly different slopes yielding an effective vertical
stereo base line of ~ 8 mm (Fig. 1b).

As depicted in Fig. 2 a, raw stereo images, taken by the
panoramic stereo sensor, are divided into NV = 72 sectors
(representing a 5° range horizontally). Each sector is
subdivided into radial elements resulting in an array of
100 grey-scale pixels I(z), z = 0,1,...,99 (Fig. 2b).

We have implemented a simple correlation based
stereo algorithm to estimate the mean shift d (dispar-
ity) of the two image parts by minimizing the matching
error (see Fig. 2b,c),

dmin = arg m}n En(d) (1)
Na-—1

En(d) = Y (I(za+2)-I(zg—d+z))" ,(2)
z=0

where N4 = 20 is the width of a window taken from the
inner image, xp is the outer image which has zero dispar-
ity with respect to za (start of inner image). Due to the
setup of the imaging mirrors only a one-dimensional cor-
respondence search is needed yielding a disparity range of
Ny = 30 pixels, i.e. d € [0, 29]. For each estimated dis-
parity dmin,i, ¢ =0, 1, ..., N — 1, we compute a quality
value ¢ € [0,1] depending on uniqueness and reliability
of the found match.

After the stereo computation, the current place can be

represented in memory by N = 72 disparities and their
corresponding quality values!, (d,q) = {(d;, ¢;),i =
0,1,...,N — 1}, which we call a “disparity signature”
of the considered location.

Using elementary trigonometry, distances r to sur-
rounding objects can be computed according to

r(d) = a/d—r9, a=2100mm X pixel , (3)

where ro = 29.5mm is the distance between the virtual
nodal points (A,B) and the robot axis (see Fig. 1b).

2.2 Homing algorithm

By comparing the current signature with a stored one, it
should be possible to return to the place where the signa-
ture has been memorized within a certain neighborhood.
To investigate this we have extended the homing algo-
rithm described in [7] for the use of disparities:

Using the current disparity signature (d, q), we com-
pute for several possible movements of the robot (rota-
tions about an angle ¢ followed by a straight move of
length 1) predicted signatures {(d°(y;,1;), (v, 1i)),i =
0,1,...N.—1} using (3) and trigonometric calculus. Oc-
clusions are dealt with by setting the corresponding qual-
ity values to zero. To avoid wrong disparity predictions
due to uncertain disparities (low quality value) we have
excluded disparities with ¢ < 0.7. The similarities of the
predicted signatures to the stored signature at the home
position, (d", q"), are estimated according to

N—-1 h ¢ 1 dh_dc 'li2
E3(pi,1;) = min Z*=0 gl q’“}s\gﬁ’ :1)(h = di (i) 1))
’ k=0 4 9, (i 1)
(4)

where ks := (k+ s) mod N, s =0,1,...N — 1. In the
current implementation the considered positions (N, =
132), lie on a hexagonal grid within a radius of approx-
imately 10cm. Subsequently the robot moves to the
position (¢opt, lopt), Which minimizes (4). We will call
(Popt> lopt) the “homing vector”. To reduce influence of
single wrong decisions, the covered distance is limited to
l < 5cm. These steps are repeated until the position
of highest similarity deviates only marginally from the
current position, i.e. lopt < lthresh = 5 mm.

3 Route learning

In our robot implementation, the recognition-triggered
responses consist of pairs of panoramic views and
scene-based homing steps [6]. The views can be one-
dimensional 360° records of either the grey values at the
horizon, or of the stereo disparities of the surrounding
objects, depending on the used homing scheme. For sim-
plicity, we use the terms snapshot or view for both types
of place signatures in the remainder of the text.

1To simplify notation we omit the index ’min’ in the following.

The set of snapshots taken to represent a route should
satisfy two criteria: First, a large distance should be
covered with a small number of snapshots to keep pro-
cessing requirements small. Second, the spatial distance
of neighbouring views should be small enough to allow
reliable navigation between them. If one intends to use
the learned routes in a topological navigation system,
a third criterion has to be added: the views should be
distinguishable. In purely view-based routes, this is the
only way to guarantee that route integration can be done
properly. One way to fulfil this criterion is to incorporate
only distinct views into the routes.

The selection of the snapshots is based on the cur-
rent view and the stored snapshots. The criteria can be
fulfilled by measuring the degree of similarity between
views: Dissimilar views tend to be distant in space and
are distinguishable by definition, and similar views often
are spatially close.

Measuring similarity can be viewed as a pattern clas-
sification problem. We take a minimalistic approach by
using the maximal pixel-wise crosscorrelation as a mea-
sure of similarity. This is equivalent to the Euclidean
distance of two view vectors (containing either grey val-
ues or disparities as entries), after first rotating one of
them such as to maximize the overlap with the other
one. Whenever a threshold of the view distance to all
stored snapshots is exceeded by the current view, a new
snapshot is taken. The threshold is chosen to ensure that
the snapshots are both distinguishable and close enough
to allow safe navigation between them. The number of
snapshots that can be distinguished using this classifier
usually falls in a range between 25 and 40, depending on
the start position. Clearly, such a classifier can also be
used to detect the proximity of already recorded snap-
shots and thus allows us to find already visited locations.
We use this classifier for both tasks in our topological
navigation system (see Sect. 4).

Using this simple classifier, the recording of routes is
straightforward. If the view distance of the current view
to the stored snapshots exceeds a threshold value, the
robot takes a new snapshot and connects it to the last
one. In this way, the classifier adapts the spacing be-
tween the snapshots to the rate of change in the optical
input. Thus, areas which have to be covered by a denser
net of snapshots, due to a rapid change of views, are also
explored more thoroughly. After having taken a snap-
shot, the robot has to decide where to go next. The
simplest conceivable rule is to choose a random direction
and then to go straight until the next snapshot. The re-
sulting Brownian motion pattern has the advantage that
eventually every accessible point of the environment will
be explored without the danger that the exploring agent
is caught in an infinite loop. Good results can also be
achieved if one uses a fixed turning angle. Using smaller
angles distant areas are reached faster, whereas angles

closer to 7 lead to a more thorough exploration of the
local neighbourhood.

Distance sensors, together with low-level obstacle
avoidance behaviours, are used to keep the robot away
from obstacles. Typically, the visual input changes very
rapidly near objects. Exploration of these areas thus re-
quires a large number of snapshots which, in complex
natural environments, would ultimately lead to a fractal
graph structure near objects. To prevent the naviga-
tion system from becoming ineffective, the robot is not
allowed to take new snapshots if nearby objects are de-
tected by proximity sensors. The resulting routes tend
to concentrate in the open space between obstacles.

REPEAT {
compute view distance d of current
view to all snapshots
read out proximity detection
IF no obstacle AND d < threshold THEN
move into current exploration direction
IF no obstacle AND d > threshold THEN {
take new snapshot
choose new exploration direction
IF obstacle THEN
modify exploration direction
}
UNTIL dead end reached OR
maxtime between snapshots exceeded

After a route has been recorded, using it for route
navigation is again straightforward as the route consists
of a chain of recognition-triggered responses: starting
from the first snapshot in the route, the robot tries to find
the next snapshot in the route by scene-based homing.
As soon as the current view becomes sufficient similar to
the goal snapshot, this event triggers a homing run to
the next snapshot in the route as goal. This procedure is
continued until the last snapshot of the route is reached.

4 View graph

As we said in the beginning, a topological navigation
system needs the capability of route integration to form
a graph-like representation of the environment. In our
case, detecting whether two routes run through the same
place amounts to detecting identical views in two dif-
ferent routes. This, however, can only be done if all
recorded views are unique. In our system, this is ensured
by the view classifier which allows only sufficiently dis-
tinct snapshots to be recorded. The resulting graph-like
representation is termed wview graph [15] with snapshots
as vertices and connections traversable by scene-based
homing as edges.

In principle, connecting two routes whenever two views
are sufficiently similar would be enough for route integra-
tion. This, however, turned out to be sensitive to false

positives since the views at the low resolution used by
the robot tend to be similar in several places in the toy
house arena. Therefore, we resorted to a more cautious
strategy: Whenever the view distance between the cur-
rent view and an unconnected snapshot drops below a
threshold, the robot decides to home to this snapshot.
If homing is successful, route integration is performed,
i.e., a newly learnt edge is included into the graph. In
cases where the robot gets lost or bumps into obstacles,
we start a new exploration run, which will typically get
connected to the old one in due course. Thus, the classi-
fier has two tasks in our system: to decide when to take
snapshots and to detect candidates for overlaps between
routes.

Our navigation scheme is designed such that all ver-
tices of the view graph remain in the catchment areas of
their respective neighbours. This property can be used
to choose the next exploration direction after a successful
route integration: The system determines the directions
of all neighbouring vertices and directs the next explo-
ration step to the largest open angle. In addition, we use
a several other routines that basically limit the connec-
tivity of the vertices and prevents intersection of edges.
This leads to an exploration behaviour that tends to con-
centrate on the least explored regions of the view graph,
i.e., regions with a smaller number of snapshots and less
connections between them. Further details can be found
in [6].

The main loop of the route learning algorithm has to
be expanded accordingly:

REPEAT {

compute view distance d2 to all
unconnected snapshots
IF no obstacle AND d2 < threshold THEN {
home to snapshot
IF vertex reached THEN {
connect routes
compute new exploration direction

}

ELSE start new graph

)

UNTIL ...

For using the recorded view graph for topological nav-
igation, one needs an additional planning module that
can generate routes between a chosen starting view and
a goal view. This can be achieved by standard graph
search algorithms, e.g., as described in [15]. The gener-
ated routes can be navigated by using the route naviga-
tion module described in the last section.

The recorded view graphs typically contained 20 to 50
snapshots and 30 to 60 edges, covering about two thirds

b)

Figure 3: a) Position estimates for k are affected by accu-
mulated errors along the paths {j,i,k} and {j,l,k}. Calcu-
lating the position for k with respect to the whole graph
reduces the position error of k. b) Due to the embedding
procedure, the position error tends to be homogeneous
over the graph. As a consequence, the angular error ¢,
must decrease proportional to d;jl

of the toy house arena. Since we required the snapshots
to be distinguishable, a single graph could cover only
areas with unambiguous view information. This general
problem of topological navigation is known as perceptual
aliasing [13]. One way to cope with this problem is to use
context information, e.g., by embedding the view graph
into a metric map with the help of additional metric
information from path integration. This leads us to the
final layer of the navigation hierarchy: survey navigation.

5 Metric embedding of a view graph

A possible way to distinguish between similar views seen
at different locations is to label the snapshots with their
respective recording positions. The consistent embed-
ding of this position information into a global metric
map gives the agent the ability to perform survey navi-
gation, i.e. the agent is able to find shortcuts apart from
the learned routes. In the following, we assume that the
robot collects position information from its odometry in
addition to the snapshots, such that each vertex of the
view graph contains a snapshot and an odometric posi-
tion estimate.

If the robot returns to an already known place by
scene-based homing, it closes a loop in the graph. Con-
sidering the cumulative error in the robot’s odometry,
it is clear that a simple vector addition will lead to er-
roneous position estimates along the path and to con-
tradicting position estimates at the starting vertex (see
figure 3a). Instead of calculating path integration along
single paths we use a graph—embedding procedure which
takes all available routes into account and prevents the
accumulation of errors [9].

5.1 Multidimensional Scaling

An agent which uses view information and metric rela-
tions simultaneously can be modeled by a state vector
containing the perceived view I, the current position

(z¢,y:) and the current heading (¢;):

St = (Iy, x4, yt, b¢) (5)

The distance between two vertices, or the length of an
edge can be calculated from two successive odometric
position estimates stored for two vertices v; and v;:

dij = \/(mi —)" + (yi — ;) (6)

The angle between two edges sharing a common vertex
are calculated from three states:

Qjik = T — arctan (u) + arctan (u> (7)

Tj — T4 T — T;

The embedding of a graph V' is mathematically equal
to finding a function f(V) — IR? which assigns a position
Z; to the node v;. The result of the graph embedding
is a configuration of points X = (&3,23,...,%,), where
pairs or triples of nodes should fulfill the geometrical
constraints given by (6) and (7).

Such problems can be solved by multidimensional scal-
ing methods [12]. A closed form solution exists if all pairs
of distances are known, i.e. if the graph is fully con-
nected [12]. Instead of using all distances contained in
the graph, which is computationally prohibitive in larger
graphs, we use the additional angle information. The re-
sulting point configuration is unique if the initial path
integrator state So = (Ip,0,0,0) is used to setup the co-
ordinate system for all position estimates, i.e. £y = (0,0)
and 2 = (#1,0). Finding an appropriate point config-
uration is an optimization problem with two error func-
tions. The first term describes the mismatch error in the
distance judgements

rx= Y (15-a1-29) .

(4,5)|di; 70

and the second term the error of the angular match?:

& — Ti
———=— — R(jik) —=—=—
25 — il |

>

(4,5,k)|aj,i,6#0

Finally, both functions are combined over a weighted
sum:

E(X) = AEs(X) + (1 — NEl(X), Ae0,1] (10)

The weighting parameter A can be used to compensate
for systematic errors in the robot’s path integrator. In
the experiments, A is kept constant at 0.5.

Given an arbitrary configuration X, function (9) is
limited by E,(X) < 4N where N is the number of terms

2R(ajix) € IR?*? is a rotation matrix

a)

=
N

o o L] -
s ! o, ~- path integration
4 9 — multidimensional scaling
o 2l |
? 2
4 9
9 o ¢ 1 5
. 2.l
(3 z / ° 2
7 % 5 2
%
9, o 37 | le £ol
% E
g s O £
! 0% b o =
5 $o
o *
Y ? 10] ;
(6. he! <4 A xdd
=] =1 " Uy
. o 00 500 80

o EY
time steps

Figure 4: a) Resulting map. Vertices marked by dia-
monds indicate the correct positions. Vertices marked
by dots are the position estimations calculated with the
MDS-method. Landmarks are shown as gray boxes. b)
Error in the path integrator position over a time inter-
val. Jumps in the mds—curve show points where the path
integrator was recalibrated. Decreases in the path inte-
gration curve are only random.

in the sum. Contrary to function (9), function (8) has
no upper limit, which could assign an excessive weight
to the distance error term. This problem is solved by
normalizing the measured edge distances by 1 max (d;;)
such that the maximal distance equals 2. Selecting a
start configuration randomly in a circle around the origin
with a radius of 2|V| guarantees a solution for which
function (8) and (9) are equally weighted. The resulting
configuration is scaled up again by 3 max (d;;).

5.2 Application to large graphs

The optimization problem defined by (10) has a dimen-
sionality of 2|V | — 3. With a growing number of vertices
a direct application of the MDS—method becomes im-
practical. Therefore the following heuristic is used to
calculate the position estimations in real—time:

1. A subgraph around the current location v, is selected
containing all vertices which are less than e edges
away from the current vertex: G' C G with V' =
{vld(v,vc) < e}

2. The MDS-procedure embeds G’ into a local coordi-
nate system with #." = (0,0) as the origin, resulting
in a point configuration X’ for the subgraph.

3. G' is merged back into the global map G. The co-
ordinate transformation is described by a rotation R
and a translation 7" which minimizes the position dif-
ference between the corresponding point sets X and
RX' + T. For this problem a closed form solution
exists (see e.g. [10] for a detailed description).

4. The new position estimates are combined with older
ones using a simple temporal lowpass filter in order
to make the global map more stable. This becomes
necessary especially as the subgraph selection could
break graph loops.

a) i b)

Y L U

position error
angle error

distance to target distance to target

Figure 5: The plots show that the MDS-method bounds
the position error over the whole environment. Therefore
the map could be used to plan paths between arbitrary
pairs of vertices. a) Position error of the target vertex
%, with respect to the distance from start vertex #;. b)
Error in the calculated driving direction €, with respect
to the distance.

5.3 FExperiments

For the experiments we use a simulation of a khepera—
robot in the toy house arena. The simulated path in-
tegrator was able to measure rotations and translations
with a precision of £10%. The heading of the agent is
assumed to be known within the visual resolution of the
panoramic image, i.e. £2.5° with 72 pixels.

Exploration is done in the same way as in topolog-
ical navigation. In addition to the view distance, a
metric distance to the recorded snapshots das (%, ;) =
min; ||Z; — g;|| is calculated at each time step. The clas-
sifier which decides when to take a new snapshot now
also takes the metric distance into account. If the view
distance is below a certain threshold and djs is greater
than 5cm a new vertex is added and the agent selects a
new exploration direction by rotating about a fixed an-
gle of 90°. As before, route integration is performed by
homing when both view and metric distance fall below a
certain threshold. After a successful homing run, a new
edge is added. Finally, the position estimates are up-
dated with the MDS—algorithm and the path integrator
is recalibrated to the improved position estimation.

In the pseudocode examples given above, survey nav-
igation leads to a further expansion of the main loop
(besides complementing the view classificator with met-
ric distances):

REPEAT {

IF no obstacle

AND view distance < thresholdl

AND metric distance < threshold2 THEN {

home to snapshot

IF vertex reached THEN {
connect routes
compute new exploration direction
update all positions using MDL
recalibrate path integrator

)

UNTIL ...

The resulting graph is shown in figure 4a. The
map quality is measured by the agent’s ability to nav-
igate reliably over larger distances apart from learned
routes. Given a start vertex v, and a target vertex
vy, the direction to the goal is calculated by a =
arctan (ys — yg)/(xs — x4). If the error € in the posi-
tion estimates is approximately homogeneous over the
graph, i.e. V; : ||&]|| = const. the error in the calculated
driving direction must decrease proportional to the dis-
tance €4 ~ ||Z5 — 2|| ™" (see figure 3b), which is indeed
the case for the resulting map (see figure 5a and 5b).

6 Concluding remarks

In the above section, we have presented all building
blocks for a biomimetic survey navigation system, from
scene-based homing as local navigation method to met-
ric embedding of view graphs. All levels up to topologi-
cal navigation have been implemented on mobile robots,
only the final level, survey navigation, still runs only in
a Virtual Reality environment.

The system is biomimetic in the sense that all be-
haviours of the navigation hierarchy are implemented in
a bottom-up manner, such that each level of the hierar-
chy relies on the capabilities of the lower levels. More-
over, all the implemented behaviours can be observed
in nature, although the biological algorithms and neu-
ral implementation will be certainly different from ours.
In this sense, our work is not intended to model a spe-
cific animal, but to test whether the hierarchical layering
of navigation behaviours can lead to a functional robot
navigation system.

Although it is still a long way until such a biomimetic
system can be used in technical applications, there are
some features that might be interesting also from an en-
gineering point of view: First, simple behaviours tend to
be robust with respect to non-stationary environments
and sensor errors. This inherent robustness is propa-
gated in a certain sense to the higher layers since these
are based on them and do not add low level behaviours
on their own. Second, the lower layers provide a backup
solution when higher levels fail. For instance, when the
global metric map becomes incorrect, the robot still can
use the graph structure to find its goal.

Acknowledgements

The authors wish to thank the workshop organizers for
giving us the opportunity to participate. Financial sup-
port was provided by the Max-Planck-Gesellschaft and
the Deutsche Forschungsgemeinschaft.

References

[1] B. A. Cartwright and T. S. Collett. Landmark learn-
ing in bees. J. Comp. Physiol. A, 151:521 — 543,
1983.

[2] K. Cheng. A purely geometric module in the rat’s
spatial representation. Cognition, 23:149-178, 1986.

[3] T. S. Collett. Landmark learning and guidance in
insects. Phil. Trans. R. Soc. Lond. B, 337:295 — 303,
1992.

[4] T. S. Collett, B. A. Cartwright, and B. A. Smith.
Landmark learning and visuo-spatial memories in
gerbils. J. Comp. Physiol. A, 158:835-851, 1986.

[5] M. O. Franz and H. A. Mallot. Biomimetic robot
navigation. Robotics and Autonomous Systems,
30:133 — 153, 2000.

[6] M. O. Franz, B. Scholkopf, H. A. Mallot, and H. H.
Biilthoff. Learning view graphs for robot navigation.
Autonomous Robots, 5:111 — 125, 1998.

[7] M. O. Franz, B. Scholkopf, H. A. Mallot, and H. H.
Biilthoff. Where did I take that snapshot? Scene-
based homing by image matching. Biol. Cybern.,
79:191 - 202, 1998.

[8] L. Hermer and E. S. Spelke. A geometric process
for spatial reorientation in young children. Nature,
370:57-59, 1994.

[9] W. Hiibner and H. A. Mallot. Integration of metric
place relations in a landmark graph. In J. R. Dor-
ronsoro, editor, Artificial Neural Networks - ICANN
2002, LNCS 2415, pages 825 — 830, Heidelberg,
2002. Springer.

[10] F. Lu and E. E. Milios. Robot pose estimation in
unknown environments by matching 2d range scans.
J. Intelligent and Robotic Systems, 18:249 — 275,
1997.

[11] H. A. Mallot. Behavior-oriented approaches to cog-
nition: Theoretical perspectives. Theory in Bio-
sciences, 116:192 — 220, 1997.

[12] K. V. Mardia, J. T. Kent, and J. M. Bibby. Multi-
variate analysis. Academic Press, London, 1979.

[13] C. Owen and U. Nehmzow. Landmark-based navi-
gation for a mobile robot. In R. Pfeifer, B. Blum-
berg, J.-A. Meyer, and S. W. Wilson, editors, From
animals to animats 5, Proc. SAB 98, pages 240 —
145, Cambridge, London, 1998. MIT Press.

[14] T. J. Prescott. Spatial representation for navigation
in animats. Adaptive Behaviour, 4:85 — 123, 1996.

[15]

[16]

B. Scholkopf and H. A. Mallot. View-based cogni-
tive mapping and path planning. Adaptive Behavior,
3:311 — 348, 1995.

W. Stiirzl and H. A. Mallot. Vision-based homing
with a panoramic stereo sensor. In H. H. Bilthoff,
S.-W. Lee, T. A. Poggio, and C. Wallraven, edi-
tors, Biologically motivated computer vision, Proc.
BMCYV 2002, LNCS 2525, pages 620 — 628, Heidel-
berg, 2002. Springer.

O. Trullier, S. I. Wiener, A. Berthoz, and J.-A.
Meyer. Biologically based artificial navigation sys-
tems: review and prospects. Progress in Neurobiol-
ogy, 51:483 — 544, 1997.

